Skip to Main Content
Skip Nav Destination

Many fluid-conveying vessels in the human body are elastic and can undergo significant flow-induced deformations, making physiological fluid mechanics a rich source of large-displacement fluid-structure interaction problems. The aim of this chapter is to demonstrate the effects of wall elasticity on three canonical internal flows that arise in physiological applications. We start in Section 8.2 by discussing low-Reynolds-number flows in the Starling resistor (the elastic-walled equivalent of Hagen–Poiseuille flow) as a generic model for single-phase flows in elastic vessels. This problem requires the coupled solution of the Stokes equations and the equations of large-displacement elasticity. In Section 8.3 we extend the theoretical framework to incorporate the presence of air–liquid interfaces and study the propagation of an air finger into a fluid-filled, non-axisymmetrically collapsed vessel (the fluid-structure interaction equivalent of the “Bretherton problem”1 )—a model of pulmonary airway (re-)opening. Finally, in Section 8.4 we examine the effect of wall elasticity on the Rayleigh–Plateau instability and show that fluid-structure interaction facilitates the formation of occluding liquid bridges in liquid-lined elastic vessels—a scenario of relevance to the physiological problem of pulmonary airway closure.

You do not currently have access to this chapter, but see below options to check access via your institution or sign in to purchase.
Don't already have an account? Register
Close Modal

or Create an Account

Close Modal
Close Modal