Skip to Main Content
Skip Nav Destination

Proteins are the work-horses of life and excute the essential processes involved in the growth and repair of cells. These roles include all aspects of cell signalling, metabolism and repair that allow living things to exist. They are not only chemical catalysts and machine components, they are also structural components of the cell or organism, capable of self-organisation into strong supramolecular cages, fibres and meshes. How proteins are encoded genetically and how they are sythesised in vivo is now well understood, and for an increasing number of proteins, the relationship between structure and function is known in exquisite detail. The next challenge in bionanoscience is to adapt useful protein systems to build new functional structures. Well-defined natural structures with potential useful shapes are a good starting point. With this in mind, in this chapter we discuss the properties of natural and artificial protein channels, nanotubes and cages with regard to recent progress and potential future applications. Chemistries for attaching together different proteins to form superstructures are considered as well as the difficulties associated with designing complex protein structures ab initio.

This content is only available via PDF.
You do not currently have access to this chapter, but see below options to check access via your institution or sign in to purchase.
Don't already have an account? Register
Close Modal

or Create an Account

Close Modal
Close Modal