Skip to Main Content
Skip Nav Destination

This chapter surveys some of the recent developments in coarse-grained modelling of nucleic acids. We first discuss models based on pseudoatoms, effective spherical particles representing groups of atoms. A major part of the chapter is devoted to models in which bases or base pairs are represented as independent, interacting rigid bodies. Two popular definitions of internal coordinates, as implemented in the programs 3DNA and Curves+, are outlined from a common perspective. Recently developed rigid base and basepair models with nonlocal quadratic interactions are presented. A statistical mechanical description of the models on their full phase space yields exact relations between model parameters and expected values of some state functions. We estimated shape and stiffness parameters for nonlocal rigid base and basepair models of a DNA oligomer containing A-tract. The parameterization is based on atomic-resolution molecular dynamics simulation data. We found that the rigid base model is consistent with a local interaction pattern, while interactions in the rigid basepair model are visibly non-local, in agreement with earlier findings. Differences in shape and stiffness parameters obtained using Curves+ and 3DNA coordinates are found to be small for structures within the B-DNA family. Anharmonic effects, coarser models, and other approaches to describe nucleic acid structure and flexibility are discussed.

You do not currently have access to this chapter, but see below options to check access via your institution or sign in to purchase.
Don't already have an account? Register
Close Modal

or Create an Account

Close Modal
Close Modal