Skip to Main Content
Skip Nav Destination

Organisms from bacteria to humans use elaborate systems to regulate levels of bioavailable zinc, copper, and other essential metals. An excess of them, or even traces of non-essential metals such as cadmium and mercury, can be highly toxic. Metallothioneins (MTs), short, cysteine-rich proteins, play pivotal roles in metal homeostasis and detoxification. With their sulfhydryl groups they avidly bind toxic metals and also play a role in cellular redox balance and radical scavenging. The intracellular concentration of MTs is adjusted to cellular demand primarily via regulated transcription. Especially upon heavy metal load, metallothionein gene transcription is strongly induced. From insects to mammals, the major regulator of MT transcription is MTF-1 (metal-responsive transcription factor 1), a zinc finger protein that binds to specific DNA sequence motifs (MREs) in the promoters of MT genes and other metal-regulated genes. This chapter provides an overview of our current knowledge on the expression and regulation of MT genes in higher eukaryotes, with some reference also to fungi which apparently have independently evolved their own regulatory systems.

Organisms from bacteria to humans use elaborate systems to regulate levels of bioavailable zinc, copper, and other essential metals. An excess of them, or even traces of non-essential metals such as cadmium and mercury, can be highly toxic. Metallothioneins (MTs), short, cysteine-rich proteins, play pivotal roles in metal homeostasis and detoxification. With their sulfhydryl groups they avidly bind toxic metals and also play a role in cellular redox balance and radical scavenging. The intracellular concentration of MTs is adjusted to cellular demand primarily via regulated transcription. Especially upon heavy metal load, metallothionein gene transcription is strongly induced. From insects to mammals, the major regulator of MT transcription is MTF-1 (metal-responsive transcription factor 1), a zinc finger protein that binds to specific DNA sequence motifs (MREs) in the promoters of MT genes and other metal-regulated genes. This chapter provides an overview of our current knowledge on the expression and regulation of MT genes in higher eukaryotes, with some reference also to fungi which apparently have independently evolved their own regulatory systems.

Organisms from bacteria to humans use elaborate systems to regulate levels of bioavailable zinc, copper, and other essential metals. An excess of them, or even traces of non-essential metals such as cadmium and mercury, can be highly toxic. Metallothioneins (MTs), short, cysteine-rich proteins, play pivotal roles in metal homeostasis and detoxification. With their sulfhydryl groups they avidly bind toxic metals and also play a role in cellular redox balance and radical scavenging. The intracellular concentration of MTs is adjusted to cellular demand primarily via regulated transcription. Especially upon heavy metal load, metallothionein gene transcription is strongly induced. From insects to mammals, the major regulator of MT transcription is MTF-1 (metal-responsive transcription factor 1), a zinc finger protein that binds to specific DNA sequence motifs (MREs) in the promoters of MT genes and other metal-regulated genes. This chapter provides an overview of our current knowledge on the expression and regulation of MT genes in higher eukaryotes, with some reference also to fungi which apparently have independently evolved their own regulatory systems.

Organisms from bacteria to humans use elaborate systems to regulate levels of bioavailable zinc, copper, and other essential metals. An excess of them, or even traces of non-essential metals such as cadmium and mercury, can be highly toxic. Metallothioneins (MTs), short, cysteine-rich proteins, play pivotal roles in metal homeostasis and detoxification. With their sulfhydryl groups they avidly bind toxic metals and also play a role in cellular redox balance and radical scavenging. The intracellular concentration of MTs is adjusted to cellular demand primarily via regulated transcription. Especially upon heavy metal load, metallothionein gene transcription is strongly induced. From insects to mammals, the major regulator of MT transcription is MTF-1 (metal-responsive transcription factor 1), a zinc finger protein that binds to specific DNA sequence motifs (MREs) in the promoters of MT genes and other metal-regulated genes. This chapter provides an overview of our current knowledge on the expression and regulation of MT genes in higher eukaryotes, with some reference also to fungi which apparently have independently evolved their own regulatory systems.

You do not currently have access to this chapter, but see below options to check access via your institution or sign in to purchase.
Don't already have an account? Register
Close Modal

or Create an Account

Close Modal
Close Modal