Skip to Main Content
Skip Nav Destination

Metallothioneins (MTs) have been described in a wide range of organisms, from bacteria to mammals, thus representing an interesting example of evolutionary molecular adaptation. If the moderate variability of MTs across phylogenetically distant organisms reflects their highly conserved function, the specific environmental requirements may explain the multiplicity of isoforms also in the same organism. The MT polymorphism is particularly important in invertebrates with respect to vertebrates. This review is an attempt to summarize the knowledge about MTs from aquatic animals, both vertebrates and invertebrates, to gain new insights into the structure-function relationship of this class of proteins. The large and increasing literature on MTs indicates that MTs from aquatic vertebrates are rather similar to mammalian counterparts, whereas a variety of structures have been described in invertebrates. Although the prototypical αβ-domain organization of vertebrate MTs has been observed in most invertebrate isoforms, some invertebrate MTs display alternative structures in which the canonical organization has been modified, such as the ββ-domain, the αββ-domain, and the multiple α-domain structures of oyster MTs, and the inverted βα-domain organization of sea urchin MTs. In this review we emphasize three major taxa of aquatic invertebrates, the molluscs, the crustaceans and the echinoderms, although some data have been reported for other invertebrates.

Metallothioneins (MTs) have been described in a wide range of organisms, from bacteria to mammals, thus representing an interesting example of evolutionary molecular adaptation. If the moderate variability of MTs across phylogenetically distant organisms reflects their highly conserved function, the specific environmental requirements may explain the multiplicity of isoforms also in the same organism. The MT polymorphism is particularly important in invertebrates with respect to vertebrates. This review is an attempt to summarize the knowledge about MTs from aquatic animals, both vertebrates and invertebrates, to gain new insights into the structure-function relationship of this class of proteins. The large and increasing literature on MTs indicates that MTs from aquatic vertebrates are rather similar to mammalian counterparts, whereas a variety of structures have been described in invertebrates. Although the prototypical αβ-domain organization of vertebrate MTs has been observed in most invertebrate isoforms, some invertebrate MTs display alternative structures in which the canonical organization has been modified, such as the ββ-domain, the αββ-domain, and the multiple α-domain structures of oyster MTs, and the inverted βα-domain organization of sea urchin MTs. In this review we emphasize three major taxa of aquatic invertebrates, the molluscs, the crustaceans and the echinoderms, although some data have been reported for other invertebrates.

Metallothioneins (MTs) have been described in a wide range of organisms, from bacteria to mammals, thus representing an interesting example of evolutionary molecular adaptation. If the moderate variability of MTs across phylogenetically distant organisms reflects their highly conserved function, the specific environmental requirements may explain the multiplicity of isoforms also in the same organism. The MT polymorphism is particularly important in invertebrates with respect to vertebrates. This review is an attempt to summarize the knowledge about MTs from aquatic animals, both vertebrates and invertebrates, to gain new insights into the structure-function relationship of this class of proteins. The large and increasing literature on MTs indicates that MTs from aquatic vertebrates are rather similar to mammalian counterparts, whereas a variety of structures have been described in invertebrates. Although the prototypical αβ-domain organization of vertebrate MTs has been observed in most invertebrate isoforms, some invertebrate MTs display alternative structures in which the canonical organization has been modified, such as the ββ-domain, the αββ-domain, and the multiple α-domain structures of oyster MTs, and the inverted βα-domain organization of sea urchin MTs. In this review we emphasize three major taxa of aquatic invertebrates, the molluscs, the crustaceans and the echinoderms, although some data have been reported for other invertebrates.

Metallothioneins (MTs) have been described in a wide range of organisms, from bacteria to mammals, thus representing an interesting example of evolutionary molecular adaptation. If the moderate variability of MTs across phylogenetically distant organisms reflects their highly conserved function, the specific environmental requirements may explain the multiplicity of isoforms also in the same organism. The MT polymorphism is particularly important in invertebrates with respect to vertebrates. This review is an attempt to summarize the knowledge about MTs from aquatic animals, both vertebrates and invertebrates, to gain new insights into the structure-function relationship of this class of proteins. The large and increasing literature on MTs indicates that MTs from aquatic vertebrates are rather similar to mammalian counterparts, whereas a variety of structures have been described in invertebrates. Although the prototypical αβ-domain organization of vertebrate MTs has been observed in most invertebrate isoforms, some invertebrate MTs display alternative structures in which the canonical organization has been modified, such as the ββ-domain, the αββ-domain, and the multiple α-domain structures of oyster MTs, and the inverted βα-domain organization of sea urchin MTs. In this review we emphasize three major taxa of aquatic invertebrates, the molluscs, the crustaceans and the echinoderms, although some data have been reported for other invertebrates.

You do not currently have access to this chapter, but see below options to check access via your institution or sign in to purchase.
Don't already have an account? Register
Close Modal

or Create an Account

Close Modal
Close Modal