Skip to Main Content
Skip Nav Destination

These lists contain the symbols and abbreviations most frequently used in this volume, but they are not expected to be exhaustive. Some specialized notation is only defined in the relevant chapter. An attempt has been made to standardize usage throughout the volume as far as is feasible, but it must be borne in mind that the original research literature certainly is not standardized in this way, and some difficulties may arise from this fact. Trivial use of subscripts etc. is not always mentioned in the symbols listed below. Some of the other symbols used in the text, e.g. for physical constants such as h or π, or for the thermodynamic quantities such as H or S, are not included in the list since they are considered to follow completely accepted usage.

aN

hyperline (electron–nucleus) interaction constant

A

  • (i) hyperfine (electron–nucleus) interaction constant

  • (ii) parameter relating to electric field effects on nuclear shielding

B

  • (i) magnetic induction field (magnetic flux density)

  • (ii) parameter relating to electric field effects on nuclear shielding

B0

static magnetic field of NMR or ESR spectrometer

B1, B2

r.f. magnetic fields associated with v1, v2

Cx

spin-rotation coupling constant of nucleus X (used sometimes in tensor form): C2=1/3(C||2+2C2)

C||, C

components of C parallel and perpendicular to a molecular symmetry axis

D

  • (i) self-diffusion coefficient

  • (ii) zero-field splitting constant

D

rotational diffusion tensor

D||, D

components of D parallel and perpendicular to a molecular symmetry axis

Dint

internal diffusion coefficient

D0

overall isotropic diffusion coefficient

E

electric field

En

eigenvalue of ̂ (or a contribution to ̂)

g

nuclear or electronic g-factor

G

magnetic field gradient

Hij

element of matrix representation of 

Hamiltonian operator-subscripts indicate its nature

Ii

nuclear spin operator for nucleus i

Iix, Iiy, Iiz

components of Ii

I

  • (i) ionization potential

  • (ii) moment of inertia

nJ

nuclear spin–spin coupling constant through n bonds (in Hz). Further information may be given by subscripts or in brackets. Brackets are used for indicating the species of nuclei coupled, e.g. J (13C, 1H) or additionally, the coupling path, e.g. J(POCF)

Jr

reduced splitting observed in a double resonance experiment

J

rotational quantum number

nK

reduced nuclear spin–spin coupling constant (see the notes concerning nJ)

mi

eigenvalue of Iiz (magnetic component quantum number)

M0

equilibrium macroscopic magnetization of a spin system in the presence of B0

Mx, My, Mz

components of macroscopic magnetization

Mn

the number of average mol. wt.

PA

valence p orbital of atom A

Pi

fractional population (or rotamers etc.)

Puv

element of bond-order, charge-density matrix

q

electric field gradient

Q

  • (i) nuclear quadrupole moment

  • (ii) quality factor for an r.f. coil

sA

valence s-orbital of atom A

SA2(0)

electron density in SA at nuclear A

S

  • (i) singlet state

  • (ii) electron (or, occasionally, nuclear spin) cf. I

  • (iii) ordering parameter for oriented systems

  • (iv) overlap integral between molecular orbitals

t

elapsed time

T

  • (i) temperature

  • (ii) triplet state

Tc

coalescence temperature for an NMR spectrum

Tg

the glass transition temperature (of a polymer)

T1X

spin–lattice relaxation time of the X nuclei (further subscripts refer to the relaxation mechanism)

T2X

spin–spin relaxation time of the X nucleus (further subscripts refer to the relaxation mechanism)

T1

inhomogeneity contribution to dephasing time for Mx or My

T1*

total dephasing time for Mx or My; (T2*)−1=T2−1+ (T2′)−1

T3

decay time following 900–τ–9090 pulse sequences

T1pX,T2pX

spin–lattice and spin–spin relaxation time of the X nuclei in the frame of reference rotating with B1

T1D

dipolar spin–lattice relaxation time

Xi

mole fraction of compound

ZA

atomic number of atom A

α

  • (i) nuclear spin wavefunction (eigenfunction of Iz) for a spin –1/2 nucleus

  • (ii) polarizability

β

nuclear spin wavefunction (eigenfunction of Iz) for a spin−½ nucleus

γX

magnetogyric ratio of nucleus X

δX

chemical shift of a nucleus of element X (positive when the sample resonates to high frequency of the reference). Usually in p.p.m.

δij

Kronecker delta (=1 if i=j, and =0 otherwise)

δ(rKA)

Dirac delta operator

Δ

  • (i) time between field gradient pulses

  • (ii) spectral width

ΔJ

anisotropy in JJ=J||J, for axial symmetry)

Δn

population difference between nuclear states

Δδ

change of difference in δ

ΔV½

full width (in Hz) of a resonance line at half-height

Δσ

  • (i) anisotropy in σσ=σ||σ, for axial symmetry)

  • (ii) differences in σ for two different situations

Δχ

  • (i) susceptibility anisotropy (Δχ||–χ, for axial symmetry)

  • (ii) differences in electronegativities

ɛr

relative permittivity

ɛ0

permittivity of a vacuum

η

  • (i) nuclear Overhauser effect

  • (ii) asymmetry factor (e.g. in e2qQ/h)

  • (iii) refractive index

  • (iv) viscosity

μ

magnetic dipole moment

μ0

permeability of a vacuum

μB

Bohr magneton

μN

nuclear magneton

vi

Larmor precession frequency of nucleus i (in Hz)

v0

  • (i) spectrometer operating frequency

  • (ii) Larmor precession frequency (general, or of bare nucleus)

v1

frequency of ‘observing’ r.f. magnetic field

v2

frequency of ‘irradiating’ r.f. magnetic field

σi

shielding parameter of nucleus i (used sometimes in tensor form). Usually in p.p.m. Subscripts may alternatively indicate contributions to σ.

σ||, σ

components of σ parallel and perpendicular to a molecular symmetry axis

σd

diagrammatic contribution to σ

σp

paramagnetic contribution to σ

τ

  • (i) pre-exchange lifetime of molecular species

  • (ii) time between r.f. pulses (general symbol)

τc

correlation time

τcoll

mean time between molecular collisions in the liquid state

τj

angular momentum correlation time

τp

pulse duration

τt

translational magnetic relaxation correlation time

χ

  • (i) magnetic susceptibility

  • (ii) electronegativity

  • (iii) nuclear quadrupole coupling constant (=e2qQ/h)

ω

carrier frequency in rad s−1

ωi, ω0, ω1, ω2

as for vi, v0, v1, v2 but in rad s−1

ωm

modulation angular frequency (in rad s−1)

ωr

sample rotation (rad −1)

a.f.

audiofrequency

a.u.

atomic unit

a.m.

amplitude modulation

b.c.c.

body-centred cubic

c.m.c.

critical micelle concentration

e.d.

electron diffraction

e.f.g.

electric field gradient

f.c.c.

face-centred cubic

f.m.

frequency modulation

h.c.p.

hexagonal close-packed

h.f.

hyperfine

i.d.

inside diameter

i.f.

intermediate frequency

l.c.

liquid crystalline

mol.wt.

molecular weight

o.d.

outside diameter

p.p.m.

parts per million

r.f.

radiofrequency

r.m.s.

root mean square

s.h.f.

super-high frequency

u.h.f.

ultra-high frequency

ADC

analogue-to-digital converter

AEE

average excitation energy approximation

AQ

acquire

ARP

adiabatic rapid passage

BIRD

bilinear rotation decoupling

CCPPA

coupled cluster polarization propagator approximation

CH-COSY

carbon–hydrogen correlation spectroscopy

CHESS

chemical shift selection

CHF

coupled Hartree–Fock molecular orbital calculations

CIDEP

chemically induced dynamic electron polarization

CIDNP

chemically induced dynamic nuclear polarization

COSY

correlation spectroscopy

CP

cross polarization

CPMG

Carr–Purcell pulse sequence. Meiboom–Gill modification

CSA

chemical shielding anisotropy

CSI

chemical shift imaging

CW

continuous wave

DAC

digital-to-analogue converter

DD

dipole–dipole (interaction or relaxation mechanism)

DEPT

distortionless enhancement by polarization transfer

DLB

differential line broadening

DNP

dynamic nuclear polarization

DQ

double quantum

DQF

double quantum filter

ECOSY

exclusive correlation spectroscopy

EHT

extended Hückel molecular orbital theory

ENDOR

electron–nucleus double resonance

EOM

equations of motion

ESR

electron spin resonance

EXSY

exchange spectroscopy

FC

Fermi contact

FID

free induction decay

FLASH

fast low angle shot

FPT

finite perturbation theory

FT

Fourier transform

GIAO

gauge included atomic orbitals

HMQ

heteronuclear multiquantum

HOHAHA

homonuclear Hartman–Hahn

HRPA

higher random phased approximation

IDESS

improved depth selective single surface coil spectroscopy

IGLO

individual gauge for different localized orbitals

INADE-QUATE

incredible natural abundance double quantum transfer experiment

INDO

intermediate neglect of differential overlap

INDO/S

intermediate neglect of differential overlap calculations for spectroscopy

INDOR

internuclear double resonance

INEPT

insensitive nuclei enhanced by polarization transfer

IR

infrared

ISIS

image selected in vivo spectroscopy

LIS

lanthanide induced shift

LORG

local origin

LSR

lanthanide shift reagent

MASS

magic angle sample spinning

MBPT

many body perturbation theory

MEM

maximum entropy method

MINDO

modified INDO

MQ

multiple quantum

MQC

multiple quantum coherence

MQF

multiple quantum filter

NMR

nuclear magnetic resonance

NOE

nuclear Overhauser enhancement

NOESY

nuclear Overhauser enhancement spectroscopy

NQCC

nuclear quadrupole coupling constant

NQR

nuclear quadrupole resonance

PFG

pulsed field gradient

PRE

proton relaxation enhancement

QF

quadrupole moment/field gradient

QPD

quadrature phase detection

REX

relativistically extended Hückel molecular orbital theory

ROESY

rotating frame Overhauser enhancement spectroscopy

RPA

random phase approximation

SCPT

self consistent perturbation theory

SD

spin dipolar

SECSY

spin echo correlation spectroscopy

SEFT

spin echo Fourier transform

SLITDRESS

slice interleaved depth resolved surface coil spectroscopy

SOPPA

second order polarization propagator approach

SPI

selective population inversion

SPT

selective population transfer

SR

spin rotation (interaction or relaxation mechanism)

TART

tip angle reduced T1 imaging

TOCSY

total correlation spectroscopy

UV

ultraviolet

WAHUHA

Waugh, Huber and Häberlen (cycle of pulses)

ZQ

zero quantum

ZQC

zero quantum coherence

acac

acetylacetonato

ACTH

adrenocorticotropic hormone (corticotropin)

ADP

adenosine diphosphate

AMP

adenosine monophosphate

ATP

adenosine triphosphate

BSA

bovine serum albumin

CMP

cytidine monophosphate

cp

cyclopentadienyl

DAP

dodecylammonium propionate

DME

1,2-dimethoxyethane

DMF

dimethylformamide

DML

dimyristoyl-lecithin

DMS

dimethylsiloxane

DMSO

dimethyl sulfoxide

DNA

deoxyribonucleic acid

DPG

2,3-diphosphoglycerate

DPI

dipalmitoyl-lecithin

dpm

dipivaloylmethanato

DPPH

diphenylpicrylhydrazyl

DSS

2,2-dimethyl-2-silapentane-5-sulfonate (usually as the sodium salt)

DTBN

di-t-butyl nitroxide

EBBA

N-(p-ethoxybenzylidene)-p-butylaniline

EDTA

ethylenediaminetetra-acetic acid

EVA

ethylene-vinyl acetate

fod

1,1,1,2,2,3,3-heptafluoro-7,7-dimethyloctane-4,6-dionato

HAB

4,4′-bis(heptyl)azoxybenzene

HMPA

hexamethylphosphoramide

HOAB

p-n-heptyloxyazoxybenzene

IHP

inositolhexaphosphate

KDP

potassium dihydrogen phosphate

MBBA

N-(p-methoxybenzylidene)-p-butylaniline

NADH(P)

nicotinamide adenine dinucleotide (phosphate)

NMF

N-methylformamide

PAA

p-azoxyanisole

PBA

pyrene butyric acid

PBLG

poly(l-benzyl μ-glutamate)

PC

phosphatidyl choline (lecithin)

PCB

polychlorinated biphenyl

PDMS

polydimethylsiloxane

PMA

poly(methacrylic acid)

PMMA

poly(methyl methacrylate)

POM

poly(oxymethylene)

PS

phosphatidylserine

PTFE

polytetrafluoroethylene

PVC

poly(vinyl chloride)

PVF

poly(vinyl fluoride)

PVP

poly(vinyl pyrrolidone)

RNA

ribonucleic acid (tRNA, transfer RNA)

SDS

sodium dodecyl sulfate

TAB

trimethylammonium bromide

TCNQ

tetracyanoquinodimethane

TFA

trifluoroacetic acid

THF

tetrahydrofuran

TMS

tetramethylsilane

UTP

uridine triphosphate

Ala alanine Leu leucine 
Arg arginine Lys lysine 
Asn asparagine Met methionine 
Asp aspartic acid Phe phenylalanine 
Cys cysteine Pro proline 
Gln glutamine Ser serine 
Glu glutamic acid Thr threonin 
Gly glycine Trp tryptophan 
His histidine Tyr tyrosine 
Hyp hydroxyproline Val valine 
Ile isoleucine   
Ala alanine Leu leucine 
Arg arginine Lys lysine 
Asn asparagine Met methionine 
Asp aspartic acid Phe phenylalanine 
Cys cysteine Pro proline 
Gln glutamine Ser serine 
Glu glutamic acid Thr threonin 
Gly glycine Trp tryptophan 
His histidine Tyr tyrosine 
Hyp hydroxyproline Val valine 
Ile isoleucine   
1

Lower case initials are used when the species is a ligand.

or Create an Account

Close Modal
Close Modal