Skip to Main Content
Skip Nav Destination

Directed evolution is now a well established technique for the improvement of enzyme properties, and for generating proteins, particularly for therapeutic use, that can bind tightly to a new target protein. Such techniques will also play a key role in the emergence of Synthetic Biology as a major route to harnessing complex biological systems that address the growing needs of a global society for better healthcare, sustainable energy, and sufficient food. The synthesis of pharmaceuticals, fuels and other chemicals, will increasingly rely on non oil-based feedstocks such as sustainable biomass. This will require novel metabolic pathways, containing specifically evolved enzymes, to be engineered into suitable host cells. By engineering a cell's proteins, it is also possible to engineer a cell with novel functions. Ambitions to create synthetic cells with entirely artificial, orthogonal or synthetic cell biology, including non-natural DNA, RNA, amino-acid, and protein analogues, will inevitably require extensive engineering of proteins using directed evolution. The early phases of this have already led to xeno-nucleic acid (XNA) synthesis capable itself of being used in a directed evolution process to produce novel aptamers.

You do not currently have access to this chapter, but see below options to check access via your institution or sign in to purchase.
Don't already have an account? Register

or Create an Account

Close Modal
Close Modal