Skip to Main Content
Skip Nav Destination

Research focussed on in situ studies for the activation and conversion of methane on well-defined metal-oxide surfaces is reviewed. In recent years, experiments with single-crystal surfaces and well-ordered films have increased our understanding of the interaction of methane with solid surfaces. Late transition metals interact weakly with methane and elevated temperatures (>400 K) are necessary to enable a significant dissociation on the hydrocarbon. In contrast, an IrO2(110) surface dissociates methane at temperatures below 200 K. Cooperative interactions between O and Ir are responsible for the binding of methane and the breaking of a C–H bond. This type of cooperative interactions involving O and a metal cation have also been seen on Ni/CeO2(111) and Co/CeO2(111) surfaces which dissociate methane at room temperature. Experiments of AP-XPS and in situ TR-XRD have shown that the active phase of metal/oxide catalysts used for the dry-reforming of methane frequently is a dynamic entity which evolves when the reaction conditions change. The addition of water to a mixture of CH4/O2 shifts the selectivity towards methanol production on CeO2/CuOx/Cu(111) and Ni/CeO2(111) surfaces. Metal-support interactions and water site-blocking play a crucial role in the conversion of methane to methanol on these catalysts.

You do not currently have access to this chapter, but see below options to check access via your institution or sign in to purchase.
Don't already have an account? Register
Close Modal

or Create an Account

Close Modal
Close Modal