Skip to Main Content
Skip Nav Destination

Since the early discovery of Prussian Blue, cyano transition metal complexes have played a fundamental role in coordination chemistry. They represent important compounds with fascinating chemical and physical properties which turn them into valuable tools for both chemists and biologists. HCN as a precursor in prebiotic chemistry has gained interest in view of its polymers being involved in the formation of amino acids, purines, and orotic acid, a biosynthetic precursor of uracil. Clearly, the rapid formation of adenine by aqueous polymerization of HCN is one of the key discoveries in these experiments. The cyanide anion is usually toxic for most aerobic organisms because of its inhibitory effects on respiratory enzymes, but as a substrate it is an important source of carbon and nitrogen for microorganisms, fungi and plants. Most interestingly, the cyanide anion is a ligand of important metal-dependent biomolecules, such as the hydrogenases and the cobalt site in vitamin B12.

Since the early discovery of Prussian Blue, cyano transition metal complexes have played a fundamental role in coordination chemistry. They represent important compounds with fascinating chemical and physical properties which turn them into valuable tools for both chemists and biologists. HCN as a precursor in prebiotic chemistry has gained interest in view of its polymers being involved in the formation of amino acids, purines, and orotic acid, a biosynthetic precursor of uracil. Clearly, the rapid formation of adenine by aqueous polymerization of HCN is one of the key discoveries in these experiments. The cyanide anion is usually toxic for most aerobic organisms because of its inhibitory effects on respiratory enzymes, but as a substrate it is an important source of carbon and nitrogen for microorganisms, fungi and plants. Most interestingly, the cyanide anion is a ligand of important metal-dependent biomolecules, such as the hydrogenases and the cobalt site in vitamin B12.

Since the early discovery of Prussian Blue, cyano transition metal complexes have played a fundamental role in coordination chemistry. They represent important compounds with fascinating chemical and physical properties which turn them into valuable tools for both chemists and biologists. HCN as a precursor in prebiotic chemistry has gained interest in view of its polymers being involved in the formation of amino acids, purines, and orotic acid, a biosynthetic precursor of uracil. Clearly, the rapid formation of adenine by aqueous polymerization of HCN is one of the key discoveries in these experiments. The cyanide anion is usually toxic for most aerobic organisms because of its inhibitory effects on respiratory enzymes, but as a substrate it is an important source of carbon and nitrogen for microorganisms, fungi and plants. Most interestingly, the cyanide anion is a ligand of important metal-dependent biomolecules, such as the hydrogenases and the cobalt site in vitamin B12.

Since the early discovery of Prussian Blue, cyano transition metal complexes have played a fundamental role in coordination chemistry. They represent important compounds with fascinating chemical and physical properties which turn them into valuable tools for both chemists and biologists. HCN as a precursor in prebiotic chemistry has gained interest in view of its polymers being involved in the formation of amino acids, purines, and orotic acid, a biosynthetic precursor of uracil. Clearly, the rapid formation of adenine by aqueous polymerization of HCN is one of the key discoveries in these experiments. The cyanide anion is usually toxic for most aerobic organisms because of its inhibitory effects on respiratory enzymes, but as a substrate it is an important source of carbon and nitrogen for microorganisms, fungi and plants. Most interestingly, the cyanide anion is a ligand of important metal-dependent biomolecules, such as the hydrogenases and the cobalt site in vitamin B12.

You do not currently have access to this chapter, but see below options to check access via your institution or sign in to purchase.
Don't already have an account? Register
Close Modal

or Create an Account

Close Modal
Close Modal