Skip to Main Content
Skip Nav Destination

The [FeFe]-hydrogenases, although share common features when compared to other metal containing hydrogenases, clearly have independent evolutionary origins. Examples of [FeFe]-hydrogenases have been characterized in detail by biochemical and spectroscopic approaches and the high resolution structures of two examples have been determined. The active site H-cluster is a complex bridged metal assembly in which a [4Fe-4S] cubane is bridged to a 2Fe subcluster with unique non-protein ligands including carbon monoxide, cyanide, and a five carbon dithiolate. Carbon monoxide and cyanide ligands as a component of a native active metal center is a property unique to the metal containing hydrogenases and there has been considerable attention to the characterization of the H-cluster at the level of electronic structure and mechanism as well as to defining the biological means to synthesize such a unique metal cluster. The chapter describes the structural architecture of [FeFe]-hydrogenases and key spectroscopic observations that have afforded the field with a fundamental basis for understanding the relationship between structure and reactivity of the H-cluster. In addition, the results and ideas concerning the topic of H-cluster biosynthesis as an emerging and fascinating area of research, effectively reinforcing the potential linkage between iron-sulfur biochemistry to the role of iron-sulfur minerals in prebiotic chemistry and the origin of life.

The [FeFe]-hydrogenases, although share common features when compared to other metal containing hydrogenases, clearly have independent evolutionary origins. Examples of [FeFe]-hydrogenases have been characterized in detail by biochemical and spectroscopic approaches and the high resolution structures of two examples have been determined. The active site H-cluster is a complex bridged metal assembly in which a [4Fe-4S] cubane is bridged to a 2Fe subcluster with unique non-protein ligands including carbon monoxide, cyanide, and a five carbon dithiolate. Carbon monoxide and cyanide ligands as a component of a native active metal center is a property unique to the metal containing hydrogenases and there has been considerable attention to the characterization of the H-cluster at the level of electronic structure and mechanism as well as to defining the biological means to synthesize such a unique metal cluster. The chapter describes the structural architecture of [FeFe]-hydrogenases and key spectroscopic observations that have afforded the field with a fundamental basis for understanding the relationship between structure and reactivity of the H-cluster. In addition, the results and ideas concerning the topic of H-cluster biosynthesis as an emerging and fascinating area of research, effectively reinforcing the potential linkage between iron-sulfur biochemistry to the role of iron-sulfur minerals in prebiotic chemistry and the origin of life.

The [FeFe]-hydrogenases, although share common features when compared to other metal containing hydrogenases, clearly have independent evolutionary origins. Examples of [FeFe]-hydrogenases have been characterized in detail by biochemical and spectroscopic approaches and the high resolution structures of two examples have been determined. The active site H-cluster is a complex bridged metal assembly in which a [4Fe-4S] cubane is bridged to a 2Fe subcluster with unique non-protein ligands including carbon monoxide, cyanide, and a five carbon dithiolate. Carbon monoxide and cyanide ligands as a component of a native active metal center is a property unique to the metal containing hydrogenases and there has been considerable attention to the characterization of the H-cluster at the level of electronic structure and mechanism as well as to defining the biological means to synthesize such a unique metal cluster. The chapter describes the structural architecture of [FeFe]-hydrogenases and key spectroscopic observations that have afforded the field with a fundamental basis for understanding the relationship between structure and reactivity of the H-cluster. In addition, the results and ideas concerning the topic of H-cluster biosynthesis as an emerging and fascinating area of research, effectively reinforcing the potential linkage between iron-sulfur biochemistry to the role of iron-sulfur minerals in prebiotic chemistry and the origin of life.

The [FeFe]-hydrogenases, although share common features when compared to other metal containing hydrogenases, clearly have independent evolutionary origins. Examples of [FeFe]-hydrogenases have been characterized in detail by biochemical and spectroscopic approaches and the high resolution structures of two examples have been determined. The active site H-cluster is a complex bridged metal assembly in which a [4Fe-4S] cubane is bridged to a 2Fe subcluster with unique non-protein ligands including carbon monoxide, cyanide, and a five carbon dithiolate. Carbon monoxide and cyanide ligands as a component of a native active metal center is a property unique to the metal containing hydrogenases and there has been considerable attention to the characterization of the H-cluster at the level of electronic structure and mechanism as well as to defining the biological means to synthesize such a unique metal cluster. The chapter describes the structural architecture of [FeFe]-hydrogenases and key spectroscopic observations that have afforded the field with a fundamental basis for understanding the relationship between structure and reactivity of the H-cluster. In addition, the results and ideas concerning the topic of H-cluster biosynthesis as an emerging and fascinating area of research, effectively reinforcing the potential linkage between iron-sulfur biochemistry to the role of iron-sulfur minerals in prebiotic chemistry and the origin of life.

You do not currently have access to this chapter, but see below options to check access via your institution or sign in to purchase.
Don't already have an account? Register
Close Modal

or Create an Account

Close Modal
Close Modal