Skip to Main Content
Skip Nav Destination

This book tackles the very fast-evolving subject of ‘MOF Mechanics’ and systematically exposes the reader to the core principles and cutting-edge science of the mechanical behaviour of metal–organic framework (MOF) materials. The body of work pertaining to MOF mechanics has reached a critical mass, which justifies the need for a first book entirely devoted to the topic. Our goals are manifold: to consolidate the knowledge uncovered thus far, to illuminate general trends, to predict future directions, and to stimulate new research on mechanical phenomena in framework materials.

MOFs are crystalline or amorphous nanoporous hybrid compounds, with highly tuneable chemical and physical properties relevant to many potential technological applications (e.g., sensors, sorption, catalysis, photonics, dielectrics). In this book, the key experimental and theoretical techniques for studying MOF mechanical properties are treated in detail. The mechanical properties considered cover elastic and plastic deformations, dynamical response, structural flexibility, high-pressure phenomena, time-dependent behaviour, cracking and fracture. Materials selection charts and extensive tables are presented throughout the book. Formulated by curating the latest data, they not only give the reader the big picture but help to identify trends and unveil gaps in the field. Representative examples are chosen to illustrate the latest advances made and highlight challenges faced in several emergent topics: framework anisotropy and terahertz dynamics, anomalous mechanical properties, structural defects, guest-mediated structural behaviour, and mechanisms of mechanical energy absorption. In essence, our emphasis is on establishing fundamental structure–property relationships, as the ability to link the chemical structures of MOFs to their resultant mechanical characteristics will allow the engineering of bespoke properties and functions.

The contents of the book have been tailored to be accessible to advanced undergraduate students, postgraduates, and current researchers, as well as new researchers entering the field. To this end, each chapter has been carefully structured to blend in an appropriate level of introductory materials and basic concepts, which are progressively built upon in complexity and developed through the book. A consistent set of mathematical notations is adopted (or redefined where appropriate). Extensive references are provided at the end of each chapter to point the interested readers to the original sources for further reading. Readers of this book will be well positioned to embark on an exciting journey, to explore and discover the fascinating mechanics of an almost infinite array of framework materials and hybrid structures.

Jin-Chong Tan

Oxford, UK

Close Modal

or Create an Account

Close Modal
Close Modal