- 15.1 Spectroscopic Techniques
- 15.1.1 UV Absorption
- 15.1.2 Fluorescence
- 15.1.3 Circular and Linear Dichroism
- 15.1.4 Infrared and Raman Spectroscopy
- 15.2 Nuclear Magnetic Resonance
- 15.3 Mass Spectrometry
- 15.3.1 Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry
- 15.3.2 Electrospray Ionization Mass Spectrometry
- 15.4 Diffraction Techniques
- 15.4.1 X-Ray Fibre Diffraction
- 15.4.2 Single Crystal X-Ray Crystallography
- 15.4.3 Neutron Diffraction
- 15.4.4 Electron Diffraction
- 15.5 Cryogenic Electron Microscopy (Cryo-EM)
- 15.5.1 The Basics of Cryo-EM
- 15.5.2 Brief History and Recent Advances that Propelled Cryo-EM as a Method
- 15.5.3 The Power of Single-Particle Cryo-EM: High Resolution and Structural Ensembles Resolve Individual Nucleotides and Reconstruct Molecular Mechanisms
- 15.5.4 Negative-Stain EM and Electron Tomography
- 15.6 Optical Microscopy of Nucleic Acids
- 15.6.1 Fluorescence Microscopy of Nucleic Acids
- 15.6.2 Fluorescence In Situ Hybridization (FISH)
- 15.6.3 Super-Resolution Microscopy – DNA-Paint
- 15.6.4 Förster Resonance Energy Transfer (FRET) in Nucleic Acids
- 15.7 Atomic Force Microscopy
- 15.8 Electrophoresis
- 15.8.1 Principles of Electrophoresis
- 15.8.2 Electrophoresis and Topology
- 15.8.3 Electrophoretic Mobility Shift Assay (EMSA)
- 15.8.4 Pulsed Field Electrophoresis
- 15.8.5 Capillary Electrophoresis
- 15.9 Chromatographic Methods
- 15.9.1 Reverse-Phase HPLC
- 15.9.2 Ion-Exchange HPLC
- 15.9.3 Size-Exclusion Chromatography
- 15.10 Centrifugation
- 15.11 Light Scattering Techniques
- 15.11.1 Static Light Scattering
- 15.11.2 Dynamic Light Scattering
- 15.11.3 Small Angle X-ray Scattering
- 15.12 Thermodynamic Analysis of Nucleic Acids
- 15.12.1 UV Melting Assay
- 15.12.2 Calorimetry
- 15.13 Molecular Mechanics and Dynamics
- 15.13.1 Molecular Mechanics and Nucleic Acid Force Fields
- 15.13.2 Conformational Ensemble and Energy Minimization
- 15.13.3 Molecular Dynamics Can Elucidate the Full Conformational Ensemble
- 15.14 QM/MM Methods for Modelling Nucleic Acids Reactions
- 15.14.1 Overview of the QM/MM Method
- 15.14.2 QM/MM Studies of DNA Repair
- References
CHAPTER 15: Online Content: Physical and Structural Techniques Applied to Nucleic Acids
-
Published:24 Jun 2022
-
Product Type: Textbooks
Y. Tor, K. Gehring, D. Fabris, M. Egli, A. A. Korostelev, T. D. Craggs, ... N. G. J. Richards, in Nucleic Acids in Chemistry and Biology, ed. G. M. Blackburn, M. Egli, M. J. Gait, and J. K. Watts, The Royal Society of Chemistry, 4th edn, 2022, pp. E1-E50.
Download citation file:
This chapter looks at the physical and structural techniques that can be applied to nucleic acids. The first few sections focus on spectroscopic techniques, nuclear magnetic resonance, mass spectrometry and diffraction techniques. The following sections explore cryogenic electron microscopy, optical microscopy, atomic force microscopy and electrophoresis. Chromatographic methods, centrifugation and light scattering techniques are also discussed. Finally, the chapter concludes with sections on thermodynamic analysis, molecular mechanics and dynamics, and QM/MM methods for modelling nucleic acids reactions.
The online content of Chapter 15 is available as a PDF here: https://books.rsc.org/books/edited-volume/chapter-pdf/1773325/bk9781788019040-000e1.pdf