Skip to Main Content
Skip Nav Destination

Memristors in crossbar arrays can accomplish computing operations while storing data at the same physical location, enabling a cost-efficient latency-free solution to the von Neumann bottleneck. Amorphous oxide semiconductor (AOS)-based memristors can be engineered to perform filamentary- and/or interface-type resistive switching. Their superior characteristics such as high flexibility compatible with low-temperature and easy manufacturing evidence their potential for embedded flexible neuromorphic technologies. In this chapter, the state-of-the-art on AOS-based resistive switching devices is analysed, along with their suitability for specific neuromorphic applications such as in-memory computation and deep and spiking neural networks. Currently, crosstalk is the main obstacle to large-scale crossbar integration and, therefore, the proposed main approaches to overcome this obstacle are discussed. Here, given the high level of behaviour control offered by AOS-based memristors, self-rectifying characteristics or optoelectronic features can be established. Moreover, the compatibility of AOS films with both memristors and thin-film transistors provides the necessary means for active crossbars to be developed in a cost-efficient, simple and higher-interconnectivity manner.

You do not currently have access to this chapter, but see below options to check access via your institution or sign in to purchase.
Don't already have an account? Register
Close Modal

or Create an Account

Close Modal
Close Modal