Skip to Main Content
Skip Nav Destination

Thanks to the intriguing thermal, electrical and mechanical properties offered by graphene by which the potential applications now extend over a wide range, from electronic devices to wearable patches. For biosensor development, in particular, various graphene-based composites have been fruitfully used in different forms, e.g. as electrode substrates, molecular hybrids, patterned films and biocompatible platforms. In the past couple of years, a significant number of reports have been devoted to graphene-based nanocomposites for electrochemical sensing of small biomolecules such as amino acids. Because of its outstanding conductivity, hydrophilicity, abundant functional groups, large surface area, and high chemical and thermal stability, graphene-based nanocomposites as electrode supports can act as a conductive platform for signal improvement for single amino acids or for two or more amino acids simultaneously. Therefore, it is essential for researchers to acknowledge the recent design and developments of graphene-based nanocomposites for sensing amino acids and derived neurotransmitters. The present chapter aims to highlight the importance of amino acids and their role in the human body and the various analytical methods employed for their effective detection. We will also highlight the reports on various graphene-based nanocomposites as electrode materials for the sensing of various amino acids such as cysteine, tryptophan and tyrosine. Finally, we will also conclude the chapter with remarks and perspectives for future development of smart sensing devices.

You do not currently have access to this chapter, but see below options to check access via your institution or sign in to purchase.
Don't already have an account? Register
Close Modal

or Create an Account

Close Modal
Close Modal