Skip to Main Content
Skip Nav Destination

In this chapter, the emphasis is on biowaste materials generally characterized by various functional groups, such as carboxyl, amine, and hydroxyl, that are used for the removal of heavy metals. The chapter discusses chitosan-based polymeric membranes for water purification, where chitosan-containing polymeric nanocomposites are used for water purification systems, as well as for adsorption of Cu(ii) and Zn(ii) ions in water and for biosorption of organic dyes. It is essential that adsorbent membranes used are effective in the removal of toxic metals, heavy metals, drugs, and dyes. For example, phosphate cellulose as biomaterial under different pH conditions can be used for effective removal of the drug ranitidine from water. The use of biowaste as an adsorbent to effectively remove toxic heavy metals, dyes, and drugs is challenging due to their nature with respect to adsorption, recovery, effectiveness, and recyclability. Biowastes obtained from agriculture, in particular, have been utilized as effective biosorbents in the water purification process. Biosorption is effective for removal of heavy metals from waste water compared with conventional methods. However, chitosan-based polymeric materials possess a high adsorption efficiency compared to biowaste materials, for the effective removal of heavy metals, various drugs, dyes, etc. This chapter also focuses on the mechanisms of adsorption of chitosan-based polymeric materials and biowaste products for effective removal of various heavy metals, drugs, and dyes, and their involvement in high adsorption efficiency, stability, and low cost.

Access to pure water is vital for the plant and animal kingdoms and is an emerging problem, as global demand increases. Many researchers and scientists are working to resolve the issue and to develop new materials with enhanced features for water purification.1 Chitosan is a naturally occurring polysaccharide and possesses remarkable properties, which have attracted particular attention, such as wide availability, renewability, interesting structural features, low cost, and impressive performance in water treatment processes.2 Chitosan is well known for its interesting properties, such as being a non-toxic biopolymer, biodegradable, and biocompatible, and it can be obtained commercially from shrimps.3 The polysaccharide polymer exhibits unique functionalities and structural features and is widely used in the fields of agriculture, biomedicine, and in environmental protection.4 Chitosan can be obtained from chitin by enzymatic and chemical methods and has also been used in biomedical applications. Chitosan compounds are highly soluble in water due to their polymeric structural features.5 The adsorption mechanism offered by chitosan and chitosan-based polymeric membranes has been widely explored for the removal of pollutants.6 Chitosan also possesses unique and attractive features that can be applied in the fields of agriculture,7 water purification,8 cosmetics,9 and biomedicine.10 It also possesses unique antibacterial properties and is a promising candidate for the removal of salts (desalination).11 For example, Motshekga et al. synthesized a chitosan-supported Ag-ZnO nanocomposite with bentonite for the effective removal of disinfectants from water.12 In another report, Kamal et al. synthesized a chitosan-ZnO nanocomposite coated onto microfibrillar cellulose and studied its antibacterial properties against Escherichia coli.13 Certain biosorbents with smaller particles show high capacity in the removal of pollutants from water due to their large surface area, which increases the availability of binding sites present on the adsorbents.14 Metals and heavy metals constitute a large portion of the pollutants found in waste water from industry. In particular, heavy metals cause environmental problems due to their high toxicity and non-biodegradable characteristics.15 At certain concentration thresholds heavy metals can cause serious health problems for humans, with adverse effects on cardiovascular, renal, gastrointestinal, peripheral, and central nervous systems.16 Cellular dysfunction occurs as a result of heavy metals combining with cellular components that contain essential elements, such as O, N, S etc., which in turn leads to modifications of enzymes or proteins.17 In aquatic bodies, elements such as Hg, Co, Cr, Al, Zn, Ni, Cu, Pb etc. are considered as priority elements to for removal from the water.18 Readily available biowaste products are used to remove or reduce the concentration of these heavy metals in waste water.19 

This chapter discusses the use of biodegradable polymers, i.e., chitosan, for the effective removal of heavy metals, dyes, and pharmaceutical small organic compounds from waste water, as well as the use of biosorbents derived from biowaste and their mechanism of action in the removal process, the development of polymeric membranes with various sized nanomaterials, chitosan-based nanomaterials, chitosan-based nanocomposite membranes, and chitosan-based metal oxide membrane development. The polymeric membranes developed have been used to compare their performance with other polymeric membranes, for the treatment of water contaminated with heavy metals, dyes, and various pharmaceutical molecules.

Characterization of the polymeric membranes was carried out using different techniques. A Malvern Panalytical instrument was used for C, H, and N elemental analysis. Functional groups were identified using Fourier-transform infrared (FT-IR) spectroscopy (Agilent) in the wavenumber range 400 to 4000 cm−1. The morphology of the as-developed polymeric membranes was observed using a Jeol JSMIT800 instrument. The crystallite size, phase, and microstructure of the as-developed polymeric membranes were observed with scanning electron microscopy (SEM) using a Jeol JSMIT800 instrument.

Elemental compositional analysis of the different chitosans (CTS) synthesized was performed with a CHN analyser. From the elemental compositional analysis, a significant decrease in C, H, N composition was observed. Table 1.1 summarizes the C, H, N composition of the various chitosan structures.

Table 1.1

Elemental analysis for chitosan and modified chitosan samples. Reproduced from ref. 20, https://doi.org/10.3390/ijms23042396, under the terms of the CC BY 4.0 license https://creativecommons.org/licenses/by/4.0/

Entry Sample Content (%) 
Chitosan (CTS) 40.27 7.91 6.22 
Chitosan–glutaradehyde (CTS–GL) 43.01 7.23 5.81 
Chitosan–epichorohydrin (CTS–EC) 37.18 6.17 5.61 
Chitosan–diethylenetriamine (CTS–DET) 43.19 7.34 8.94 
Chitosan–monochloroaceticacid (CTS–CAA) 42.54 6.98 7.38 
Entry Sample Content (%) 
Chitosan (CTS) 40.27 7.91 6.22 
Chitosan–glutaradehyde (CTS–GL) 43.01 7.23 5.81 
Chitosan–epichorohydrin (CTS–EC) 37.18 6.17 5.61 
Chitosan–diethylenetriamine (CTS–DET) 43.19 7.34 8.94 
Chitosan–monochloroaceticacid (CTS–CAA) 42.54 6.98 7.38 

SEM analysis was carried out in order to understand the change in morphology of the as-developed membranes. Figure 1.1(a and b) displays the change in morphology of chitosan and chitosan nanocomposites.

Figure 1.1

Scanning electron microscopy images for unmodified chitosan (a) and CTS–CAA (b). Reproduced from ref. 20, https://doi.org/10.3390/ijms23042396, under the terms of the CC BY 4.0 license https://creativecommons.org/licenses/by/4.0/.

Figure 1.1

Scanning electron microscopy images for unmodified chitosan (a) and CTS–CAA (b). Reproduced from ref. 20, https://doi.org/10.3390/ijms23042396, under the terms of the CC BY 4.0 license https://creativecommons.org/licenses/by/4.0/.

Close modal

FT-IR was performed to understand the change in the functional groups of the modified and unmodified chitosan, and to provide reliable information for prediction of the structural changes taking place in the chitosan. Figure 1.2(a and b) shows unmodified and modified chitosan. The unmodified chitosan shows asymmetric and symmetric stretching of N–H groups appearing at 3400 cm−1 and 3250 cm−1, respectively, while the primary amine appears at 1650–1580 cm−1 as a broader peak. The peaks in the region 1564 cm−1 to 1628 cm−1 relate to the bending vibration of the N–H peak. The modified chitosans, especially chitosan–glutaradehyde (CTS–GL), show a broad –OH peak in the range 3200 to 3400 cm−1. For the modified chitosans the sharp appearance of the N–H bands disappeared due to the formation of cross-linking, while additional bands appeared in the region 2859 cm−1 to 2955 cm−1 due to the presence of CH2 groups.

Figure 1.2

FT-IR spectra of unmodified chitosan, CTS–GL, CTS–EC, CTS–DET, and CTS–CAA in the wavenumber range 3800–2600 cm−1 (a) and in the wavenumber range 1900–600 cm−1 (b). Reproduced from ref. 20, https://doi.org/10.3390/ijms23042396, under the terms of the CC BY 4.0 license https://creativecommons.org/licenses/by/4.0/.

Figure 1.2

FT-IR spectra of unmodified chitosan, CTS–GL, CTS–EC, CTS–DET, and CTS–CAA in the wavenumber range 3800–2600 cm−1 (a) and in the wavenumber range 1900–600 cm−1 (b). Reproduced from ref. 20, https://doi.org/10.3390/ijms23042396, under the terms of the CC BY 4.0 license https://creativecommons.org/licenses/by/4.0/.

Close modal

To understand the phase and crystallinity of the unmodified and modified chitosan, X-ray diffraction (XRD) spectra were recorded, as displayed in Figure 1.3. The dominant peaks appearing at 2θ values of 10.22° and 19.77° correspond to the unmodified chitosan membrane, while the modified chitosan–CAA shows strong peaks at 2θ = 8.259° and 22.145°, respectively. Modification of the structure of the chitosan can be inferred from the shift in the position of the 1st peak to a lower 2θ, value while the second peak is shifted to a higher 2θ value. The peak broadening in the XRD spectrum shows a high degree of functionalization inside the polysaccharide membrane.

Figure 1.3

XRD diffractograms of unmodified chitosan and CTS–CAA. Reproduced from ref. 20, https://doi.org/10.3390/ijms23042396, under the terms of the CC BY 4.0 license https://creativecommons.org/licenses/by/4.0/.

Figure 1.3

XRD diffractograms of unmodified chitosan and CTS–CAA. Reproduced from ref. 20, https://doi.org/10.3390/ijms23042396, under the terms of the CC BY 4.0 license https://creativecommons.org/licenses/by/4.0/.

Close modal

Over the past decades different polymeric membranes have been developed and used efficiently in the purification of water or in water treatment processes. Certain conditions and features are generally needed to optimize the process of separation of contaminants and to improve the efficiency of the separation process.21 Nanoparticles (NPs) embedded into the polymeric matrix improve certain parameters, such as stability, flexibility, and separation grade, and can be used for effective removal of contaminants from waste water.22 There are different nanomaterial-based biosensors with various applications (Figure 1.4). Abedini et al. synthesized a new polymeric membrane using TiO2-cellulose using a sonochemical technique and used it in the water treatment process.23 The water flux greatly increased with increase in TiO2 concentration up to 20 wt%. Chaloupka et al. reported antibacterial properties for Ag NPs dependent on their size, shape, and chemistry. Because of their chemoselective nature, Ag NPs are found to decrease the bacterial concentration and spread on the cell membrane.24 Cao et al. synthesized a new membrane by inserting Ag NPs and vitamin C as a reducing agent.25 Haider et al. reported the antibacterial activity of the polyethersulfone membrane against E. coli upon incorporation of Ag NPs.

Figure 1.4

Illustration of zero-, one-, two-, and three-dimensional nanomaterial-based point-of-care biosensing devices. Reproduced from ref. 26 with permission from Elsevier, Copyright 2022.

Figure 1.4

Illustration of zero-, one-, two-, and three-dimensional nanomaterial-based point-of-care biosensing devices. Reproduced from ref. 26 with permission from Elsevier, Copyright 2022.

Close modal

Cu NPs are robustly used in the synthesis of polymeric membranes. Cu NPs and their derivatives present antibacterial and antifungal properties against different microorganisms.27 Xu et al. synthesized membranes with antibacterial properties for Cu NPs incorporated in chelated polyacrylonitrile membranes. On the other hand, ZnO NPs have attracted much attention due to their diverse antibacterial and antifungal properties and their ability to attract hydroxyl groups, with a larger exterior system compared to other inorganic NPs.28 Similar results were obtained for Al2O3 NPs and they showed significant improvement in hydrophilicity and fouling properties.29 The most common methods used in the synthesis of polymers are interfacial polymerization, surface deposition, and structure entrapment.30 Zinadini et al. reported the synthesis of Fe2O3 NPs on the formation of polymeric membranes.31 Niksefat et al. studied the morphology and performance of a sheet of Si NPs, and as the composition of Si increased the water permeability of the polymer and flux increment also increased.32 

In recent years one-dimensional (1D) NPs have gained much interest due to their attractive and unique features, such as flexibility, porosity, etc., and they are widely used in sensors for environmental monitoring, bioengineering, etc. One of these interesting materials is carbon nanotubes (CNTs), which display enhanced permeability, physiochemical, mechanical, and thermal properties without any decrease in their selectivity.33 Celik et al. synthesized a CNT-functionalized polymeric membrane to increase permeability and decrease the fouling rate. The synthesized CNT-functionalized polysulfone polymeric membrane is widely used in the removal of heavy metals.34 Shen et al. synthesized methyl methacrylate-reinforced CNT polymers and showed enhanced water permeability and increased flux, by 62%, compared with pristine composite membranes.35 To exhibit high potential for water treatment processes, polymer membranes have been decorated with ZrO2 and TiO2 NPs.36 Pan et al. reported the synthesis of thin-film composite membranes for the removal of various pollutants,37 which also showed remarkable antibacterial properties against E. coli and Staphylococcus aureus.

In recent years, scientists and researchers have developed two-dimensional (2D) nanocomposite materials with superior properties, such as chemically active surface area, and superior transport properties, with respect to their shape, size, and structure38 (Figure 1.5). When incorporated with polymeric membranes, the 2D nanocomposite materials showed superior contaminant removal from water.39 2D nanomaterials have also been used in the desalination process. Graphene is a 2D material that has been used in the desalination process due to its honeycomb-like structure.40 The honeycomb structure facilitates 100% removal of salts from water, as well showing removal of 99% of organic contaminants when coated with PVDF.41 Graphene oxide (GO) is produced from the oxidation of graphite and possesses more hydrophobic functional groups, such as –NH2, –COOH, –OH, etc. Water purification can be enhanced by incorporation of GO with the polymeric structure.42 Yang et al. reported the synthesis of GO in nanofiltration membranes, which were found to be effective in water and dye purification.43 Xiaowei et al. reported the synthesis of chitosan dispersed with GO and this has been widely used in water purification systems.44 Gao et al. synthesized di-vanadium pentoxide (V2O5) in the presence of hierarchal TiO2 NPs for the effective removal of organic contaminants from water.45 

Figure 1.5

Different shapes and sizes of nanoparticles. Reproduced from ref. 46, https://doi.org/10.3390/membranes10100297, under the terms of the CC BY 4.0 license https://creativecommons.org/licenses/by/4.0/.

Figure 1.5

Different shapes and sizes of nanoparticles. Reproduced from ref. 46, https://doi.org/10.3390/membranes10100297, under the terms of the CC BY 4.0 license https://creativecommons.org/licenses/by/4.0/.

Close modal

Currently there are larger number of inorganic materials that are three-dimensional (3D) in structure, such as silicates, zeolites, etc. Zeolites, in particular, are used in gas and liquid separation, desalination, and in the formation of polymeric membrane reactors.47 Zeolites show enhanced permeability, greater selectivity, high thermal and mechanical properties, etc. The presence of zeolites in the structure increases the hydrophilicity, diversifies the molecular structure, and provides greater stability, as described by Huang et al.48 Certain nanocomposite membranes have shown greater chemical reactivity (catalysis) when fixed with CO2. Ahmad et al. synthesized polymeric membranes with amounts of silica at different concentrations.49 The newly formed silica showed greater permeability than the simple membrane and the results showed that antifouling properties were enhanced, which in turn increased the oil and water separation.50 Nanoparticles showing fluorescence and sensing properties can be used to detect heavy metals in water treatment applications.51–55 There are many different 0D, 1D, and 2D nanoparticles used in water treatment, as shown in Table 1.2.

Table 1.2

Applications of nanoparticles in nanocomposite polymeric membranes for water treatment. Reproduced from ref. 56, https://doi.org/10.3390/ma14092091, under the terms of the CC BY 4.0 license https://creativecommons.org/licenses/by/4.0/a

Nanoparticle Membrane type Targeted application Reference 
ZnO MF Wastewater treatment, copper ions, and VOC elimination from water systems 57–59  
UF Humic acid, salt, micelles elimination from solutions, treatment of waste waters 60–64  
NF Water treatment, separation of Rhodamine B 65–67  
FO Desalinization and wastewater treatment 68  
RO Salt, bivalent ions, and bacterial retention models 69  
AgNO3 UF Evaluation of antibacterial properties and salt elimination (Na2SO470  
RO Evaluating antibacterial properties and salts (NaCl) 71–73  
DCMD DCMD desalination of sea water through silver nanoparticle deposition 74  
PRO/RO Evaluating antifouling and antibacterial properties in water treatment membranes 75  
Ag NPs MF/UF Evaluating antifouling properties in water treatment membranes—mixture model—BSA 76  
UF Water purification, evaluating antifouling properties in water treatment membranes 77–81  
NF Evaluating antibacterial properties in water treatment membranes 82  
Bio-Ag0 UF Evaluating antifouling and antibacterial properties in water treatment membranes 83  
NF Evaluating antibacterial properties and salt removal 84 and 85  
Cu NPs UF Wastewater treatment and evaluating antifouling properties in membranes 86 and 87  
RO Evaluating antibacterial properties in water treatment membranes and salt removal 88  
TiO2 NPs MF Evaluating antifouling properties using whey solution 89  
UF Evaluating antifouling properties in water treatment membranes. Treatment of water systems 90–95  
FO Evaluating salt rejection (NaCl) 96  
MF/MBR Evaluating antifouling properties 97  
TIP  Evaluating antifouling properties 97  
CNTs NF Evaluating antifouling and salt rejection (NaCl, Na2SO4), filtration system applications 98–102  
UF Water system treatment and biofouling application. Water treatment for applications 102–105  
MF Effluent treatment through a membrane bioreactor 106  
GO MF Effluent elimination with high dye content. Wastewater filtration 107–113  
NF Soft water production. Water treatment 114 and 115  
RO Salt removal (NaCl, CaCl2 and Na2SO4116  
FO Desalination processes for sea water 117  
Graphene UF Wastewater treatment 118  
NF Water purification 119  
Nanoparticle Membrane type Targeted application Reference 
ZnO MF Wastewater treatment, copper ions, and VOC elimination from water systems 57–59  
UF Humic acid, salt, micelles elimination from solutions, treatment of waste waters 60–64  
NF Water treatment, separation of Rhodamine B 65–67  
FO Desalinization and wastewater treatment 68  
RO Salt, bivalent ions, and bacterial retention models 69  
AgNO3 UF Evaluation of antibacterial properties and salt elimination (Na2SO470  
RO Evaluating antibacterial properties and salts (NaCl) 71–73  
DCMD DCMD desalination of sea water through silver nanoparticle deposition 74  
PRO/RO Evaluating antifouling and antibacterial properties in water treatment membranes 75  
Ag NPs MF/UF Evaluating antifouling properties in water treatment membranes—mixture model—BSA 76  
UF Water purification, evaluating antifouling properties in water treatment membranes 77–81  
NF Evaluating antibacterial properties in water treatment membranes 82  
Bio-Ag0 UF Evaluating antifouling and antibacterial properties in water treatment membranes 83  
NF Evaluating antibacterial properties and salt removal 84 and 85  
Cu NPs UF Wastewater treatment and evaluating antifouling properties in membranes 86 and 87  
RO Evaluating antibacterial properties in water treatment membranes and salt removal 88  
TiO2 NPs MF Evaluating antifouling properties using whey solution 89  
UF Evaluating antifouling properties in water treatment membranes. Treatment of water systems 90–95  
FO Evaluating salt rejection (NaCl) 96  
MF/MBR Evaluating antifouling properties 97  
TIP  Evaluating antifouling properties 97  
CNTs NF Evaluating antifouling and salt rejection (NaCl, Na2SO4), filtration system applications 98–102  
UF Water system treatment and biofouling application. Water treatment for applications 102–105  
MF Effluent treatment through a membrane bioreactor 106  
GO MF Effluent elimination with high dye content. Wastewater filtration 107–113  
NF Soft water production. Water treatment 114 and 115  
RO Salt removal (NaCl, CaCl2 and Na2SO4116  
FO Desalination processes for sea water 117  
Graphene UF Wastewater treatment 118  
NF Water purification 119  
a

UF, ultrafiltration; MF, microfiltration; NF, nanofiltration; FO, forward osmosis; RO, reverse osmosis; DCMD, direct contact membrane distillation; MBR, membrane bioreactor; TIP, titanium tetraisopropoxide; VOC, volatile organic compounds.

The process of water purification involves removal of contaminants from waste water.120 In recent years diversified and novel improved polymeric membranes have been developed for water purification.121 Various membranes have been developed with biomaterials and other particles deposited on them for efficient removal of contaminants from water. However, the process of removal of large- and small-sized particles depends on the pore size of the particles.122 Many processes are used for the removal of contaminants from water, such as microfiltration, nanofiltration, ultrafiltration, etc. In the use of chitosan-like biomaterials, their physical character, adsorption ability, and selectivity determine the contaminant removal from waste water123 (Figure 1.6).

Figure 1.6

Schematic diagram of chitosan with different properties and biomedical applications. Reproduced from ref. 130, https://doi.org/10.3390/molecules24101960, under the terms of the CC BY 4.0 license https://creativecommons.org/licenses/by/4.0/.

Figure 1.6

Schematic diagram of chitosan with different properties and biomedical applications. Reproduced from ref. 130, https://doi.org/10.3390/molecules24101960, under the terms of the CC BY 4.0 license https://creativecommons.org/licenses/by/4.0/.

Close modal

For water treatment, changes in the structure of chitosan with hydrogels or beads,124 nanoparticles,125 membranes,126 fibres,127 powders,128  etc. are needed. The increased adsorption capacity of the chitosan-supported membranes is due to their elemental composition, surface area, pore volume, size, etc.129 Saifuddin et al. reported structural variation in chitosan when doped with Ag NPs and this was used for the removal of pesticides in agriculture. Magnetically activated C-doped chitosan can be used as an adsorbent for the removal of antibiotics and smaller pharmaceutical compounds, such as ciprofloxacin, amoxicillin, erythromycin, etc. Nadavala et al. synthesized a novel chitosan-based membrane with sodium alginate and calcium chloride, which is widely used in the removal of phenols.

Pollutants, such as inorganic oxides, and organic pollutants, such as dyes, drugs, pesticides, detergents, and phenols, play a vital role in the water purification process. For the removal of organic contaminants, the concentration, pH, and contact time influence the absorptivity for removal of the pollutant from waste water. Studies carried out by Bibi et al. summarized the adsorption capacity of modified chitosan membrane-based systems with polyvinyl alcohol (PVA), nanotubes, and silane, which were responsible for the removal of naphthalene.153 Fan et al. reported the synthesis of magnetic graphene oxide-modified chitosan for the effective removal of methylene blue.154 In their reports, the modified chitosan with magnetic graphene oxide was characterized by SEM, XRD, and FT-IR techniques. The change in the parameters for the modified chitosan showed higher adsorption of methylene blue when compared with unmodified chitosan. Chitosan with GO nanocomposites doped with Cu NPs were reported by Khan et al. for the effective removal of 4-nitrophenol compounds from water.155 For the effective removal of polyethylene glycol (PEG) and PVA, chitosan supported by a silica membrane was used by Herman et al.156 The study showed enhanced permeability, selectivity, and increased mechanical features for the membrane. The study also showed that higher amounts of PEG resulted in increased pore diameter and increased the flux rate. However, increase in PVA concentration decreased the pore diameter and flux rate. Rosdi et al. synthesized chitosan polymeric membrane with silica added for the effective removal of Pb(ii) ions from waste water.157 The composite membrane showed greater selectivity and effective removal of Pb(ii) ions compared with the unmodified chitosan. An evacuation permeation process was carried out for the novel development of chitosan membranes containing zeolite, which was further loaded with glutaraldehyde, for the removal of trace metal ions, such as Cr, As, Pb, etc.158 Carbon nanotubes were loaded with chitosan for the development of polymeric membranes and are effective for the removal of heavy metal ions.159 A special membrane was also developed with chitosan-biochar (CBS). The as-prepared CBS composite has shown higher absorptivity, which can be attributed to the large pore size of the CBS, which is extensively used in the removal of heavy metals, antibiotics, and pharmaceuticals from waste water.160 The diverse applications of chitosan, the added compounds, and the material type are summarized in Table 1.3.

Table 1.3

Diverse applications of chitosan with various compounds. Reproduced from ref. 56, https://doi.org/10.3390/ma14092091, under the terms of the CC BY 4.0 license https://creativecommons.org/licenses/by/4.0/

Material type Compound Selected applications References 
0D Ag NPs Health and environment, textile industry 131–141  
Cu NPs Biomedical, biofouling, water treatment 
Zn NPs Heavy metal removal, adsorbent in water applications 
TiO2 NPs Water treatment, antifouling applications 
Glycerol Burn dressing applications 
PEG Wound dressing applications 
1D CNTs Wastewater treatment 142–144  
TiO2 CNTs Proton-exchange membranes 
Attapulgite Proton-exchange membranes for fuel cells 
Cellulose/halloysite Biomedical applications 
2D GO Adsorbent in water purification, food industry 145–152  
SiO2@PVDF Supercapacitor, membrane separation applications 
MMT Drug delivery systems, food packing applications 
LAP@Ag NPs Food packing applications 
Material type Compound Selected applications References 
0D Ag NPs Health and environment, textile industry 131–141  
Cu NPs Biomedical, biofouling, water treatment 
Zn NPs Heavy metal removal, adsorbent in water applications 
TiO2 NPs Water treatment, antifouling applications 
Glycerol Burn dressing applications 
PEG Wound dressing applications 
1D CNTs Wastewater treatment 142–144  
TiO2 CNTs Proton-exchange membranes 
Attapulgite Proton-exchange membranes for fuel cells 
Cellulose/halloysite Biomedical applications 
2D GO Adsorbent in water purification, food industry 145–152  
SiO2@PVDF Supercapacitor, membrane separation applications 
MMT Drug delivery systems, food packing applications 
LAP@Ag NPs Food packing applications 

Various metal oxides when combined with chitosan show significantly improved adsorption ability and are widely used in the removal of contaminants from waste water. Among these, ZnO, MgO, Fe3O4, etc. show a significant improvement because of their high semiconducting characteristics. Among the various metal oxides, ZnO–chitosan has shown remarkable properties due to its increased surface area and semiconducting properties161 (Figure 1.7). The as-formed ZnO–chitosan hybrid materials are effective in the removal of organic contaminants from waste water, compared with unmodified chitosan. On doping with ZnO, the hybrid material showed an increase in the number of active centres, formation of a surface-strengthening effect, and improved surface corrosion resistance properties.

Figure 1.7

Functioning of chitosan-based metal oxides. Reproduced from ref. 162, https://doi.org/10.3390/polym9010021, under the terms of the CC BY 4.0 license https://creativecommons.org/licenses/by/4.0/.

Figure 1.7

Functioning of chitosan-based metal oxides. Reproduced from ref. 162, https://doi.org/10.3390/polym9010021, under the terms of the CC BY 4.0 license https://creativecommons.org/licenses/by/4.0/.

Close modal

MgO NPs are used in water purification treatments, especially for removal of organic contaminants, due to their high chemical stability and non-toxicity.163 MgO NPs were dispersed into a chitosan polysaccharide matrix for the effective removal of reactive blue dye in a very short contact time.164 Additionally, Fe3O4 NPs also showed good adsorption characteristics, especially when used in the magnetic separation process. Abu El-Soad et al.20 prepared chitosan-functionalized recyclable biomaterial for the adsorption of Cu(ii) and Zn(ii) ions in aqueous media (Table 1.4).

Table 1.4

Metal ion adsorption and desorption on modified chitosan over three cycles. Reproduced from ref. 20, https://doi.org/10.3390/ijms23042396, under the terms of the CC BY 4.0 license https://creativecommons.org/licenses/by/4.0/

Cycle 
Metal Adsorption (%) Desorption (%) Adsorption (%) Desorption (%) Adsorption (%) Desorption (%) 
Copper 100 80.23 91.56 76.54 88.47 74.36 
Zinc 100 84.21 93.42 79.89 89.75 78.89 
Cycle 
Metal Adsorption (%) Desorption (%) Adsorption (%) Desorption (%) Adsorption (%) Desorption (%) 
Copper 100 80.23 91.56 76.54 88.47 74.36 
Zinc 100 84.21 93.42 79.89 89.75 78.89 

Adimule et al. synthesized nanocomposites of rare earth metals and they exhibited enhanced binding sites with considerable increase in their specific surface area.165–169 These can be further applied by researchers to modify chitosan and study their applications.

Biosorption isotherm models have been utilized to study the initial concentration of dye influencing the biosorption process. The initial concentration of the dye was studied in the range 50–400 mg L−1 at a constant time interval of 400 minutes. With increase in the concentration of the initial dye, the biosorption capacity of the polymer substantially increased. At the initial dye concentration on the polymer, more binding sites are available for biosynthesis of the dye molecule. Transformation from the liquid state to the solid state occurred with the initial biosorption process. Increased mass transfer of the dye molecule occurred with respect to initial dye concentration. Further biosorption capacity of the dye remained constant after some time, which can be attributed to the saturation state of the chitosan polymer, with no more binding places available.170 Due to saturation of the binding sites, excess dye molecules are not adsorbed. Similar behaviour has been reported for chitosan–PVA, chitosan–MgO, and chitosan-activated C.171 

Chitosan performance for both anionic and cationic dyes is summarized in Table 1.5. An optimal pH range of 8–11 is required for the removal of cation dye using chitosan polymer, whereas a pH of 2–6.8 (acidic range) is optimal for the removal of the anionic dye. The biosorption process takes place in the temperature range 25 °C–45 °C. The process of biosorption is affected by contact time, initial pollutant concentration, solution temperature, etc. The dye removal efficiency depends upon the solution pH. The pH of the solution affects the charge of the polymer composites and this suggests that the dye removal process is chemisorption.172 Chemisorption involves electronic interaction and exchange of the charges between the chitosan polymer and the dye molecules. Physical absorption takes place between the binding sites on the polymer.173 

Table 1.5

Removal efficiency of cationic and anionic dyes using various types of chitosan composites under different operating conditions. Reproduced from ref. 174, https://doi.org/10.3390/polym13173009, under the terms of the CC BY 4.0 license, https://creativecommons.org/licenses/by/4.0/

Chitosan Composites Cationic/Anionic dye pH dosage Bio sorbent concentration Initial dye (mg L−1Contact time (min) Temperature (°C) Efficiency (%) Reference 
Chitosan/Zeolite Cationic 2.0 100 138.65 30 84.85 175  
Chitosan/ZnO Cationic 2.4 50 180 30 98.50 176  
Chitosan/Activated carbon Cationic 11 1.0 400 60 30 91.02 177  
Chitosan/Bentonite Cationic 10 0.2 100 360 25 88.00 178  
Chitosan/Fe3O4/GOa Cationic 11 1.0 100 70 27 87.6 179  
Chitosan/MgO Anionic 6.8 9.3 100 120 30 79.50 180  
Chitosan/PVAa Anionic 2.0 50 40 30 86.70 181  
Chitosan/Cellulose Anionic 6.6 2.5 500 625 30 95.00 182  
Chitosan/Kaolin clay Anionic 0.6 140 30 30 99.50 183  
Chitosan/GOa Anionic 1.0 250 1440 25 86.00 184  
Chitosan Composites Cationic/Anionic dye pH dosage Bio sorbent concentration Initial dye (mg L−1Contact time (min) Temperature (°C) Efficiency (%) Reference 
Chitosan/Zeolite Cationic 2.0 100 138.65 30 84.85 175  
Chitosan/ZnO Cationic 2.4 50 180 30 98.50 176  
Chitosan/Activated carbon Cationic 11 1.0 400 60 30 91.02 177  
Chitosan/Bentonite Cationic 10 0.2 100 360 25 88.00 178  
Chitosan/Fe3O4/GOa Cationic 11 1.0 100 70 27 87.6 179  
Chitosan/MgO Anionic 6.8 9.3 100 120 30 79.50 180  
Chitosan/PVAa Anionic 2.0 50 40 30 86.70 181  
Chitosan/Cellulose Anionic 6.6 2.5 500 625 30 95.00 182  
Chitosan/Kaolin clay Anionic 0.6 140 30 30 99.50 183  
Chitosan/GOa Anionic 1.0 250 1440 25 86.00 184  
a

GO, graphene oxide; PVA, poly vinyl alcohol.

A common definition for the presence of pharmaceuticals in water is a high concentration of organic components, microbial activity, difficult to biodegrade, microbial toxicity, high amount of salt, etc. Removal of pharmaceutical contaminants requires purpose-built high-temperature incineration and cleaning of the passing flue gas.

Reverse osmosis and nanofiltration are also effective processes for the removal of pharmaceuticals from waste water. The pharmaceuticals enter the water supply by excretion.

In this chapter, chitosan supported with various nanomaterials, composites, metal oxides, and other substances has been discussed, along with its importance in the development of polymeric membranes and applications in the purification of water. This approach aims to incorporate the effectiveness of the biological, renewable source chitosan and increase its efficiency in the removal of most metals, including heavy metals, and dyes from waste water by incorporation of various sized (0D, 1D, 2D and 3D) nanomaterials and nanocomposites. The role, mechanism, and stability of the polymeric membrane has been discussed. Chitosan-supported and composite membranes have been found to be efficient for the removal of contaminants from waste water, especially dyes, pharmaceuticals, and heavy metals.

Dr Vinayak Adimule and Dr Shanshanka Rajendrachari conceived the ideas, wrote the paper, and carried out grammatical corrections in the manuscript. Miss Nidhi Manhas was involved in the manuscript arrangement and further corrections, such as typographical and grammatical errors.

Data from the present study are presented in the chapter and further data can be obtained from the corresponding author on request by e-mail.

All authors declare that they have not received any funding from any source or organization.

All authors declare that they do not have any conflict of interest.

All the authors thank Bartin University, Bartin, Turkey and School of Sciences, IGNOU, New Delhi for constant encouragement and support.

1.
Crini
G.
,
Badot
P. M.
,
Prog. Polym. Sci.
,
2008
, vol.
33
pg.
399
2.
Pan
Y.
,
Li
Y.
,
Zhao
H.
,
Zheng
J.
,
Xu
H.
,
Wei
G.
,
Hao
J.
,
Cui
F.
,
Int. J. Pharm.
,
2002
, vol.
249
pg.
139
3.
Muzzarelli
R.
,
Muzzarelli
C.
,
Adv. Polym. Sci.
,
2005
, vol.
186
pg.
151
4.
Zhang
H. L.
,
Wu
S. H.
,
Tao
Y.
,
Zang
L. Q.
,
Su
Z. Q.
,
J. Nanomater.
,
2010
, vol.
2010
pg.
1
5.
Younes
I.
,
Rinaudo
M.
,
Mar. Drugs
,
2015
, vol.
13
pg.
1133
6.
Zhang
L.
,
Zeng
Y.
,
Cheng
Z.
,
J. Mol. Liq.
,
2016
, vol.
214
pg.
175
7.
Northcott
K. A.
,
Snape
I.
,
Scales
P. J.
,
Stevens
G. W.
,
Chem. Eng. Sci.
,
2005
, vol.
60
pg.
6835
8.
Chung
Y. C.
,
Wang
H. L.
,
Chen
Y. M.
,
Li
S. L.
,
Bioresour. Technol.
,
2003
, vol.
88
pg.
179
9.
Crini
G.
,
Prog. Polym. Sci.
,
2005
, vol.
30
pg.
38
10.
Berger
J.
,
Reist
M.
,
Mayer
J. M.
,
Felt
O.
,
Gurny
R.
,
Eur. J. Pharm. Biopharm.
,
2004
, vol.
57
pg.
35
11.
Jiang
Y.
,
Gong
J. L.
,
Zeng
G. M.
,
Ou
X. M.
,
Chang
Y. N.
,
Deng
C. H.
,
Zhang
J.
,
Liu
H. Y.
,
Huang
S. Y.
,
Int. J. Biol. Macromol.
,
2016
, vol.
82
pg.
702
12.
Motshekga
S. C.
,
Ray
S. S.
,
Onyango
M. S.
,
Momba
M. N. B.
,
Appl. Clay Sci.
,
2015
, vol.
114
pg.
330
13.
Kamal
T.
,
Ul-Islam
M.
,
Khan
S. B.
,
Asiri
A. M.
,
Int. J. Biol. Macromol.
,
2015
, vol.
81
pg.
584
14.
Onate
C. E.
and
Frances
E. M.
,
A Review of Chitosan-Based Materials for the Removal of Organic Pollution from Water and Bioaugmentation
,
Chitin-Chitosan—Myriad Functionalities in Science and Technology
,
InTech.
,
London, UK
,
2018
.
15.
Mourya
V. K.
,
Inamdar
N. N.
,
React. Funct. Polym.
,
2008
, vol.
68
pg.
1013
16.
Wanrosli
W. D.
,
Rohaizu
R.
,
Ghazali
A.
,
Carbohydr. Polym.
,
2011
, vol.
84
pg.
262
17.
Kim
S. S.
,
Jeong
W. Y.
,
Shin
B. C.
,
Oh
S. Y.
,
Kim
H. W.
,
Rhee
J. M.
,
J. Biomed. Mater. Res.
,
1998
, vol.
40
pg.
401
18.
Igura
M.
,
Okazaki
M.
,
J. Hazard. Mater.
,
2010
, vol.
178
pg.
686
19.
Sulflet
D. M.
,
Chitanu
G. C.
,
Popa
V. I.
,
React. Funct. Polym.
,
2006
, vol.
66
pg.
1240
20.
Abu El-Soad
A. M.
,
Lazzara
G.
,
Abd El-Magied
M. O.
,
Cavallaro
G.
,
Al-Otaibi
J. S.
,
Sayyed
M. I.
,
Kovaleva
E. G.
,
Int. J. Mol. Sci.
,
2022
, vol.
23
pg.
2396
21.
Marino
T.
,
Boerrigter
M.
,
Faccini
M.
,
Chaumette
C.
,
Arockiasamy
L.
,
Bundschuh
J.
and
Figoli
A.
,
Photocatalytic Activity and Synthesis Procedures of TiO2 Nanoparticles for Potential Applications in Membranes
,
Application of Nanotechnology in Membranes for Water Treatment
,
CRC Press
,
London
, 1st edn,
2017
, pp.
127
146
.
22.
Madaeni
S. S.
,
Ghaemi
N.
and
Rajabi
H.
,
Advances in Polymeric Membranes for Water Treatment
,
Advances in Membrane Technologies for Water Treatment
,
Woodhead Publishing Limited
,
Cambridge, UK
,
2015
, pp.
3
41
.
23.
Abedini
R.
,
Mousavi
S. M.
,
Aminzadeh
R.
,
Desalination
,
2011
, vol.
277
pg.
40
24.
Chaloupka
K.
,
Malam
Y.
,
Seifalian
A. M.
,
Trends Biotechnol.
,
2010
, vol.
28
pg.
580
25.
Cao
X.
,
Tang
M.
,
Liu
F.
,
Nie
Y.
,
Zhao
C.
,
Colloids Surf., B
,
2010
, vol.
81
pg.
555
26.
Byakodi
M.
,
Shrikrishna
N. S.
,
Sharma
R.
,
Bhansali
S.
,
Mishra
Y.
,
Kaushik
A.
,
Gandhi
S.
,
Biosens. Bioelectron.
,
2022
, vol.
12
pg.
100284
27.
Haider
M. S.
,
Shao
G. N.
,
Imran
S. M.
,
Park
S. S.
,
Abbas
N.
,
Tahir
M. S.
,
Hussain
M.
,
Bae
W.
,
Kim
H. T.
,
Mater. Sci. Eng., C
,
2016
, vol.
62
pg.
732
28.
Xu
J.
,
Feng
X.
,
Chen
P.
,
Gao
C.
,
J. Membr. Sci.
,
2012
, vol.
413
pg.
62
29.
Saleh
T. A.
,
Gupta
V. K.
,
Sep. Purif. Technol.
,
2012
, vol.
89
pg.
245
30.
Mojtahedi
Y. M.
,
Mehrnia
M. R.
,
Homayoonfal
M.
,
Desalin. Water Treat.
,
2013
, vol.
51
pg.
6736
31.
Zinadini
S.
,
Zinatizadeh
A. A.
,
Rahimi
M.
,
Vatanpour
V.
,
Zangeneh
H.
,
J. Membr. Sci.
,
2014
, vol.
453
pg.
292
32.
Niksefat
N.
,
Jahanshahi
M.
,
Rahimpour
A.
,
Desalination
,
2014
, vol.
343
pg.
140
33.
Fontananova
E.
,
Grosso
V.
,
Aljlil
S. A.
,
Bahattab
M. A.
,
Vuono
D.
,
Nicoletta
F. P.
,
Curcio
E.
,
Drioli
E.
,
Profio
G.
,
J. Membr. Sci.
,
2017
, vol.
541
pg.
198
34.
Celik
E.
,
Park
H.
,
Choi
H.
,
Water Res.
,
2011
, vol.
45
pg.
274
35.
Shen
J. N.
,
Yu
C. C.
,
Ruan
H. M.
,
Gao
C. J.
,
van der Bruggen
B.
,
J. Membr. Sci.
,
2013
, vol.
442
pg.
18
36.
Homaeigohar
S. S.
,
Elbahri
M.
,
J. Colloid Interface Sci.
,
2012
, vol.
372
pg.
6
37.
Pan
S. F.
,
Ke
X. X.
,
Wang
T. Y.
,
Liu
Q.
,
Zhong
L. B.
,
Zheng
Y. M.
,
Ind. Eng. Chem. Res.
,
2019
, vol.
58
pg.
984
38.
Kim
W. G.
,
Nair
S.
,
Chem. Eng. Sci.
,
2013
, vol.
104
pg.
908
39.
Aghigh
A.
,
Alizadeh
V.
,
Wong
H. Y.
,
Islam
M. S.
,
Amin
N.
,
Zaman
M.
,
Desalination
,
2015
, vol.
365
pg.
389
40.
Gerente
C.
,
Lee
V. K. C.
,
Cloirec
P. L.
,
McKay
G.
,
Crit. Rev. Environ. Sci. Technol.
,
2007
, vol.
37
pg.
41
41.
Jhaveri
J. H.
,
Murthy
Z. V. P.
,
Desalination
,
2016
, vol.
379
pg.
137
42.
Croitoru
A. M.
,
Ficai
A.
,
Ficai
D.
,
Trusca
R.
,
Dolete
G.
,
Andronescu
E.
,
Turculet
S. C.
,
Materials
,
2020
, vol.
13
pg.
1687
43.
Yang
M.
,
Zhao
C.
,
Zhang
S.
,
Li
P.
,
Hou
D.
,
Appl. Surf. Sci.
,
2017
, vol.
394
pg.
149
44.
Xiaowei
Q.
,
Na
L.
,
Qinzhuo
W.
,
Ji
S.
,
Desalination
,
2018
, vol.
438
pg.
83
45.
Gao
P.
,
Tai
M. H.
,
Sun
D. D.
,
ChemPlusChem
,
2013
, vol.
78
pg.
1475
46.
Goh
P. S.
,
Wong
K. C.
,
Ismail
A. F.
,
Membranes
,
2020
, vol.
10
pg.
1
47.
Dong
L. X.
,
Huang
X. C.
,
Wang
Z.
,
Yang
Z.
,
Wang
X. M.
,
Tang
C. Y.
,
Sep. Purif. Technol.
,
2016
, vol.
166
pg.
230
48.
Huang
H.
,
Qu
X.
,
Ji
X.
,
Gao
X.
,
Zhang
L.
,
Chen
H.
,
Hou
L.
,
J. Mater. Chem. A
,
2013
, vol.
1
pg.
11343
49.
Ahmad
A. L.
,
Majid
M. A.
,
Ooi
B. S.
,
Desalination
,
2011
, vol.
268
pg.
266
50.
Kumar
S.
,
Prasad
K.
,
Gil
J. M.
,
Sobral
A.
,
Koh
J.
,
Carbohydr. Polym.
,
2018
, vol.
198
pg.
401
51.
Adimule
V.
,
Batakurki
S.
,
Yallur
B. C.
,
Bathula
C.
,
Parashuram
L.
,
J. Mater. Sci.: Mater. Electron.
,
2022
, vol.
33
pg.
18699
52.
Adimule
V.
,
Batakurki
S.
,
Bhat
V. S.
,
Yallur
B. C.
,
Hegde
G.
,
Bathula
C.
,
J. Energy Storage
,
2023
, vol.
57
pg.
106318
53.
Adimule
V.
,
Yallur
B. C.
,
Keri
R.
,
Bathula
C.
,
Batakurki
S.
,
Electron. Mater. Lett.
,
2022
pg.
1
54.
Adimule
V.
,
Rajendrachari
S.
,
Mahale
R.
,
Batakurki
S.
,
Yallur
B. C.
,
Nandi
S.
,
Bagihalli
G.
,
Silicon
,
2022
pg.
1
55.
Adimule
V.
,
Batakurki
S.
,
Yallur
B. C.
,
Keri
R.
,
J. Mater. Res.
,
2022
, vol.
15
pg.
2396
56.
Spoial
A.
,
Ilie
C. I.
,
Ficai
D.
,
Ficai
A.
,
Andronescu
E.
,
Materials
,
2021
, vol.
14
pg.
2091
57.
Liang
S.
,
Xiao
K.
,
Mo
Y.
,
Huang
X.
,
J. Membr. Sci.
,
2012
, vol.
394
pg.
184
58.
Zhang
X.
,
Wanga
Y.
,
Liu
Y.
,
Xu
J.
,
Han
Y.
,
Xu
X.
,
Appl. Surf. Sci.
,
2014
, vol.
316
pg.
333
59.
Hong
J.
,
He
Y.
,
Desalination
,
2012
, vol.
302
pg.
71
60.
Chung
Y. T.
,
Ba-Abbad
M. M.
,
Mohammad
A. W.
,
Benamor
A.
,
Desalin. Water Treat.
,
2015
, vol.
57
pg.
7801
61.
Ghoul
J. E.
,
Ghiloufi
I.
,
L-Hobaib
A. S. A.
,
Mir
L. E.
,
J. Ovonic Res.
,
2017
, vol.
13
pg.
83
62.
Jo
Y. J.
,
Choi
E. Y.
,
Choi
N. W.
,
Kim
C. K.
,
Ind. Eng. Chem. Res.
,
2016
, vol.
55
pg.
7801
63.
Pintilie
S.
,
Tiron
L. G.
,
Birsan
I.
,
Balta
S.
,
Mater. Plast.
,
2017
, vol.
54
pg.
257
64.
Ronen
A.
,
Semiat
R.
,
Dosoretz
C.
,
Water Res.
,
2013
, vol.
47
pg.
6628
65.
Bai
H.
,
Liu
Z.
,
Sun
D. D.
,
Appl. Catal., B
,
2012
, vol.
111
pg.
571
66.
Khan
S. B.
,
Alamry
K. A.
,
Bifari
E. N.
,
Asiri
A. M.
,
Yasir
M.
,
Gzara
L.
,
Ahmad
R. Z.
,
J. Ind. Eng. Chem.
,
2015
, vol.
24
pg.
266
67.
Akin
I.
,
Ersoz
M.
,
Desalin. Water Treat.
,
2014
, vol.
57
pg.
3037
68.
Zhao
X.
,
Li
J.
,
Liu
C.
,
Desalination
,
2017
, vol.
408
pg.
102
69.
Isawi
H.
,
El-Sayed
M. H.
,
Feng
X.
,
Shawky
H.
,
Mottaleb
M. S. A.
,
Appl. Surf. Sci.
,
2016
, vol.
385
pg.
268
70.
Zhang
Y.
,
Wan
Y.
,
Shi
Y.
,
Pan
G.
,
Yan
H.
,
Xu
J.
,
Guo
M.
,
Qin
L.
,
Liu
Y.
,
J. Polym. Res.
,
2016
, vol.
23
pg.
105
71.
Ben-Sasson
M.
,
Lu
X.
,
Bar-Zeev
E.
,
Zodrow
K. R.
,
Nejati
S.
,
Qi
G.
,
Giannelis
E. P.
,
Elimelech
M.
,
Water Res.
,
2014
, vol.
62
pg.
260
72.
Yang
Z.
,
Wu
Y.
,
Wang
J.
,
Cao
B.
,
Tang
C. Y.
,
Environ. Sci. Technol.
,
2016
, vol.
50
pg.
9543
73.
Ahmad
A.
,
Jamshed
F.
,
Riaz
T.
,
Gul
S. E.
,
Waheed
S.
,
Sabir
A.
,
AlAnezi
A. A.
,
Adrees
M.
,
Jamil
T.
,
Carbohydr. Polym.
,
2016
, vol.
149
pg.
207
74.
Liao
Y.
,
Wang
R.
,
Fane
A. G.
,
J. Membr. Sci.
,
2013
, vol.
440
pg.
77
75.
Zhang
S.
,
Qiu
G.
,
Ting
Y. P.
,
Chung
T. S.
,
Colloids Surf., A
,
2013
, vol.
436
pg.
207
76.
Alpatova
A.
,
Kim
E. S.
,
Sun
X.
,
Hwang
G.
,
Liu
Y.
,
El-Din
M. G.
,
J. Membr. Sci.
,
2013
, vol.
444
pg.
449
77.
Rehan
Z. A.
,
Gzara
L.
,
Khan
S. B.
,
Alamry
K. A.
,
El-Shahawi
M. S.
,
Albeirutty
M. H.
,
Figoli
A.
,
Drioli
E.
,
Asiri
A. M.
,
Recent Pat. Nanotechnol.
,
2016
, vol.
10
pg.
231
78.
Sile-Yuksel
M.
,
Tas
B.
,
Koseoglu-Imer
D. Y.
,
Koyuncu
I.
,
Desalination
,
2014
, vol.
347
pg.
120
79.
Koseoglu-Imer
D. Y.
,
Kose
B.
,
Altinbas
M.
,
Koyuncu
I.
,
J. Membr. Sci.
,
2013
, vol.
428
pg.
620
80.
Hoek
E. M. V.
,
Ghosh
A. K.
,
Huang
X.
,
Liong
M.
,
Zink
J. I.
,
Desalination
,
2011
, vol.
283
pg.
89
81.
Escobar
I. C.
,
Bruggen
B. V. D.
,
J. Appl. Polym. Sci.
,
2015
, vol.
132
pg.
42002
82.
Andrade
P. F.
,
de Faria
A. F.
,
Quites
F. J.
,
Oliveira
S. R.
,
Alves
O. L.
,
Arruda
M. A. Z.
,
Gonçalves
M. D. C.
,
Cellulose
,
2015
, vol.
22
pg.
3895
83.
Zhang
M.
,
Field
R. W.
,
Zhang
K.
,
J. Membr. Sci.
,
2014
, vol.
471
pg.
274
84.
Liu
S.
,
Fang
F.
,
Wu
J.
,
Zhang
K.
,
Desalination
,
2015
, vol.
375
pg.
121
85.
Liu
S.
,
Zhang
M.
,
Fang
F.
,
Cui
L.
,
Wu
J.
,
Field
R.
,
Zhang
K.
,
Desalin. Water Treat.
,
2015
, vol.
57
pg.
10560
86.
Hoek
E. M. V.
,
Ghosh
A. K.
,
Huang
X.
,
Liong
M.
,
Zink
J. I.
,
Desalination
,
2011
, vol.
283
pg.
89
87.
Akar
N.
,
Asar
B.
,
Dizge
N.
,
Koyuncu
I.
,
J. Membr. Sci.
,
2013
, vol.
437
pg.
216
88.
Ben-Sasson
M.
,
Zodrow
K. R.
,
Genggeng
Q.
,
Kang
Y.
,
Giannelis
E. P.
,
Elimelech
M.
,
Environ. Sci. Technol.
,
2014
, vol.
48
pg.
384
89.
Madaeni
S. S.
,
Zinadini
S.
,
Vatanpour
V.
,
J. Membr. Sci.
,
2011
, vol.
380
pg.
155
90.
Shi
F.
,
Ma
Y.
,
Ma
J.
,
Wang
P.
,
Sun
W.
,
J. Membr. Sci.
,
2012
, vol.
389
pg.
522
91.
Rajaeian
B.
,
Heitz
A.
,
Tade
M. O.
,
Liu
S.
,
J. Membr. Sci.
,
2015
, vol.
485
pg.
48
92.
Mericq
J. P.
,
Mendret
J.
,
Brosillon
S.
,
Faur
C.
,
Chem. Eng. Sci.
,
2015
, vol.
123
pg.
283
93.
Mollahosseini
A.
,
Rahimpour
A.
,
J. Ind. Eng. Chem.
,
2014
, vol.
20
pg.
1261
94.
Abedini
R.
,
Mousavi
S. M.
,
Aminzadeh
R. A.
,
Desalination
,
2011
, vol.
277
pg.
40
95.
Ngo
T. H. A.
,
Nguyen
D. T.
,
Do
K. D.
,
Nguyen
T. T. M.
,
Mori
S.
,
Tran
D. T.
,
J. Sci.: Adv. Mater. Devices
,
2016
, vol.
1
pg.
468
96.
Amini
M.
,
Rahimpour
A.
,
Jahanshahi
M.
,
Desalin. Water Treat.
,
2015
, vol.
57
pg.
14013
97.
Moghadam
F.
,
Omidkhah
M. R.
,
Farahani
E. V.
,
Pedram
M. Z.
,
Dorosti
F.
,
Sep. Purif. Technol.
,
2011
, vol.
77
pg.
128
98.
Kim
S. J.
,
Lee
P. S.
,
Bano
S.
,
Park
Y. I.
,
Nam
S. E.
,
Lee
K. H.
,
J. Appl. Polym. Sci.
,
2016
, vol.
133
pg.
43383
99.
Kim
E. S.
,
Hwang
G.
,
El-Din
M. G.
,
Liu
Y.
,
J. Membr. Sci.
,
2012
, vol.
394
pg.
37
100.
Ahmad
F.
,
Santos
C. M.
,
Mangadlao
J.
,
Advincula
R.
,
Rodrigues
D. F.
,
Water Res.
,
2013
, vol.
47
pg.
3966
101.
Kim
E. S.
,
Liu
Y.
,
El-Din
M. G.
,
J. Membr. Sci.
,
2013
, vol.
429
pg.
418
102.
Shah
P.
,
Murthy
C. N.
,
J. Membr. Sci.
,
2013
, vol.
437
pg.
90
103.
Shen
J. N.
,
Yu
C. C.
,
Ruan
H. M.
,
Gao
C. J.
,
van der Bruggen
B.
,
J. Membr. Sci.
,
2013
, vol.
442
pg.
18
104.
Celik
E.
,
Park
H.
,
Choi
H.
,
Water Res.
,
2011
, vol.
45
pg.
274
105.
Sianipar
M.
,
Kim
S. H.
,
Min
C.
,
Tijing
L. D.
,
Shon
H. K.
,
J. Ind. Eng. Chem.
,
2016
, vol.
34
pg.
364
106.
Khalid
A.
,
Abdel-Karim
A.
,
Atieh
M. A.
,
Javed
S.
,
McKay
G.
,
Sep. Purif. Technol.
,
2018
, vol.
190
pg.
165
107.
Mulopo
J.
,
J. Environ. Chem. Eng.
,
2017
, vol.
5
pg.
4381
108.
Ursino
C.
,
Castro-Munoz
R.
,
Drioli
E.
,
Gzara
L.
,
Albeirutty
M. H.
,
Figoli
A.
,
Membranes
,
2018
, vol.
8
pg.
18
109.
Zhao
C.
,
Xu
X.
,
Chen
J.
,
Yang
F.
,
Desalination
,
2014
, vol.
334
pg.
17
110.
Xia
S.
,
Yao
L.
,
Zhao
Y.
,
Li
N.
,
Zheng
Y.
,
Chem. Eng. J.
,
2015
, vol.
280
pg.
720
111.
Lee
J.
,
Chae
H. R.
,
Won
Y. J.
,
Lee
K.
,
Lee
C. H.
,
Lee
H. H.
,
Kim
I. C.
,
Lee
J. M.
,
J. Membr. Sci.
,
2013
, vol.
448
pg.
223
112.
Pastrana-Martinez
L. M.
,
Torres
S. M.
,
Figueiredo
J. L.
,
Faria
J. L.
,
Silva
A. M. T.
,
Water Res.
,
2015
, vol.
77
pg.
179
113.
Kiran
S. A.
,
Thuyavan
Y. L.
,
Arthanareeswaran
G.
,
Matsuura
T.
,
Ismail
A. F.
,
Chem. Eng. J.
,
2016
, vol.
286
pg.
528
114.
Goh
K.
,
Setiawan
L.
,
Wei
L.
,
Si
R.
,
Fane
A. G.
,
Wang
R.
,
Chen
Y.
,
J. Membr. Sci.
,
2015
, vol.
474
pg.
244
115.
Wang
J.
,
Zhao
C.
,
Wang
T.
,
Wu
Z.
,
Li
X.
,
Li
J.
,
RSC Adv.
,
2016
, vol.
6
pg.
82174
116.
He
L.
,
Dumee
L. F.
,
Feng
C.
,
Velleman
L.
,
Reis
R.
,
She
F.
,
Gao
W.
,
Kong
L.
,
Desalination
,
2015
, vol.
365
pg.
126
117.
Shen
L.
,
Xiong
S.
,
Wang
Y.
,
Chem. Eng. Sci.
,
2016
, vol.
143
pg.
194
118.
Crock
C. A.
,
Rogensues
A. R.
,
Shan
W.
,
Tarabara
V. V.
,
Water Res.
,
2013
, vol.
47
pg.
3984
119.
Han
Y.
,
Xu
Z.
,
Gao
C.
,
Adv. Funct. Mater.
,
2013
, vol.
23
pg.
3693
120.
Gotoh
T.
,
Matsushima
K.
,
Kikuchi
K.
,
Chemosphere
,
2004
, vol.
55
pg.
135
121.
Wang
W.
,
Zhao
Y.
,
Bai
H.
,
Zhang
T.
,
Ibarra-Galvan
V.
,
Song
S.
,
Carbohydr. Polym.
,
2018
, vol.
198
pg.
518
122.
Petkar
K. C.
,
Chavhan
S.
,
Kunda
N.
,
Saleem
I.
,
Somavarapu
S.
,
Taylor
K. M. G.
,
Sawant
K. K.
,
AAPS PharmSciTech
,
2018
, vol.
19
pg.
1758
123.
Cooper
A.
,
Oldinski
R.
,
Ma
H.
,
Bryers
J. D.
,
Zhang
M.
,
Carbohydr. Polym.
,
2013
, vol.
92
pg.
254
124.
Andres
Y.
,
Giraud
L.
,
Gerente
C.
,
le Cloirec
P.
,
Environ. Technol.
,
2007
, vol.
28
pg.
1357
125.
Jagtap
S.
,
Yenkie
M. K.
,
Das
S.
,
Rayalu
S.
,
Desalination
,
2011
, vol.
273
pg.
267
126.
Beppu
M. M.
,
Vieira
R. S.
,
Aimoli
C. G.
,
Santana
C. C.
,
J. Membr. Sci.
,
2007
, vol.
301
pg.
126
127.
Qi
C.
,
Zhao
L.
,
Lin
Y.
,
Wu
D.
,
J. Colloid Interface Sci.
,
2018
, vol.
517
pg.
18
128.
Amaike
M.
,
Senoo
Y.
,
Yamamoto
H.
,
Macromol. Rapid Commun.
,
1998
, vol.
19
pg.
287
129.
Min
L. L.
,
Yang
L. M.
,
Wu
R. X.
,
Zhong
L. B.
,
Yuan
Z. H.
,
Zheng
Y. M.
,
J. Colloid Interface Sci.
,
2019
, vol.
535
pg.
255
130.
Gregor
K.
,
Mateja
P.
,
Željko
K.
,
Maja
L.
,
Molecules
,
2019
, vol.
24
pg.
1960
131.
Khaydarov
R.
,
Evgrafova
S.
,
Wagner
S.
and
Cho
S.
,
Environmental and Human Health Issues of Silver Nanoparticles Applications
,
Environ. Sec. Ecoterr.
,
Springer
,
Dordrecht, The Netherlands
,
1970
, p. 117.
132.
Xu
Q.
,
Ke
X.
,
Ge
N.
,
Shen
L.
,
Zhang
Y.
,
Fu
F.
,
Liu
X.
,
Fibers Polym.
,
2018
, vol.
19
pg.
1004
133.
Verma
N.
,
Kumar
N.
,
ACS Biomater. Sci. Eng.
,
2019
, vol.
5
pg.
1170
134.
Chapman
J.
,
Nor
L.
,
Brown
R.
,
Kitteringham
E.
,
Russell
S.
,
Sullivan
T.
,
Regan
F.
,
J. Mater. Chem. B
,
2013
, vol.
1
pg.
6194
135.
Dankovich
T.
,
Smith
J.
,
Water Res.
,
2014
, vol.
63
pg.
245
136.
Le
A. T.
,
Pung
S. Y.
,
Sreekantan
S.
,
Matsuda
A.
,
Huynh
D. P.
,
Helios
,
2019
, vol.
5
pg.
e01440
137.
Nalwa
K.
,
Thakur
A.
,
Sharma
N.
,
Adv. Mater.
,
2017
, vol.
2
pg.
697
138.
Acheampong
M.
,
Antwi
D.
,
J. Environ. Sci. Eng. A
,
2016
, vol.
9
pg.
13
139.
Zhang
R. X.
,
Braeken
L.
,
Liu
T. Y.
,
Luis
P.
,
Wang
X. L.
,
van der Bruggen
B.
,
Appl. Sci.
,
2017
, vol.
7
pg.
81
140.
Khoo
T. L.
,
Halim
A. S.
,
Saad
A. M.
,
Dorai
A. A.
,
Burns
,
2010
, vol.
36
pg.
897
141.
Chen
S. L.
,
Fu
R. H.
,
Liao
S. F.
,
Liu
S. P.
,
Lin
S. Z.
,
Wang
Y. C.
,
Cell Transplant.
,
2018
, vol.
27
pg.
275
142.
Ngah
W. S. W.
,
Endud
C. S.
,
Mayanar
R.
,
React. Funct. Polym.
,
2002
, vol.
50
pg.
181
143.
Tsen
W. C.
,
Polym. Eng. Sci.
,
2020
, vol.
60
pg.
1832
144.
Hu
F.
,
Li
T.
,
Zhong
F.
,
Wen
S.
,
Zheng
G.
,
Gong
C.
,
Qin
C.
,
Liu
H.
,
J. Appl. Polym. Sci.
,
2020
, vol.
137
pg.
49079
145.
Sharifzadeh
G.
,
Soheilmoghaddam
M.
,
Adelnia
H.
,
Wahit
M. U.
,
Arzhandi
M. R. D.
,
Moslehyani
A.
,
Polym. Eng. Sci.
,
2020
, vol.
60
pg.
1169
146.
Croitoru
A. M.
,
Ficai
A.
,
Ficai
D.
,
Trusca
R.
,
Dolete
G.
,
Andronescu
E.
,
Turculet
S. C.
,
Materials
,
2020
, vol.
13
pg.
1687
147.
Sundramoorthy
A.
,
Gunasekaran
S.
,
TrAC, Trends Anal. Chem.
,
2014
, vol.
60
pg.
36
148.
Ortega
P.
,
Trigueiro
J.
,
Silva
G.
,
Lavall
R.
,
Electrochim. Acta
,
2015
, vol.
188
pg.
809
149.
Yu
L. Y.
,
Xu
Z. L.
,
Shen
H. M.
,
Yang
H.
,
J. Membr. Sci.
,
2009
, vol.
337
pg.
257
150.
Abdeen
R.
,
Salahuddin
N.
,
J. Chem.
,
2013
, vol.
2013
pg.
1
151.
Kasirga
Y.
,
Oral
A.
,
Caner
C.
,
Polym. Compos.
,
2012
, vol.
33
pg.
1874
152.
Wu
Z. G.
,
Huang
X. J.
,
Li
Y. C.
,
Xiao
H. Z.
,
Wang
X. Y.
,
Carbohydr. Polym.
,
2018
, vol.
199
pg.
210
153.
Bibi
S.
,
Yasin
T.
,
Hassan
S.
,
Riaz
M.
,
Nawaz
M.
,
Mater. Sci. Eng., C
,
2015
, vol.
46
pg.
359
154.
Fan
L.
,
Luo
C.
,
Li
X.
,
Lu
F.
,
Qiu
H.
,
Sun
M.
,
J. Hazard. Mater.
,
2012
, vol.
215
pg.
272
155.
Khan
S. B.
,
Ali
F.
,
Akhtar
K.
,
Carbohydr. Polym.
,
2019
, vol.
207
pg.
650
156.
Herman
S.
,
Saputra
E.
,
Siregar
M. R.
,
Panjaitan
D. N. I.
,
Pinem
J. A.
,
J. Appl. Mater. Technol.
,
2019
, vol.
1
pg.
31
157.
Rosdi
N.
,
Sokri
M. N. M.
,
Rashid
N. M.
,
Chik
M. S. C.
,
Musa
M. S.
,
J. Appl. Membr. Sci. Technol.
,
2018
, vol.
23
pg.
63
158.
Truong
T.
,
Takaomi
K.
,
Bui
H.
,
J. Serb. Chem. Soc.
,
2019
, vol.
84
pg.
83
159.
Sashiwa
H.
,
Aiba
S. I.
,
Prog. Polym. Sci.
,
2004
, vol.
29
pg.
887
160.
da Silva Alves
D. C.
,
Healy
B.
,
Pinto
L. A.
,
Cadaval
T. R.
,
Breslin
C. B.
,
Molecules
,
2021
, vol.
26
pg.
594
161.
Saad
A. M.
,
Abukhadra
M. R.
,
Ahmed
S. A. K.
,
Elzanaty
A. M.
,
Mady
A. H.
,
Betiha
M. A.
,
Shim
J. J.
,
Rabie
A. M.
,
J. Environ. Manage.
,
2020
, vol.
258
pg.
110043
162.
Hoang
V. K. B.
,
Duckshin
P.
,
Lee
Y. C.
,
Polymers
,
2017
, vol.
9
pg.
21
163.
Velempini
T.
,
Prabakaran
E.
,
Pillay
K.
,
Mater. Today Chem.
,
2021
, vol.
19
pg.
100380
164.
Iftekhar
S.
,
Deb
A.
,
Heidari
G.
,
Sillanpaa
M.
,
Lehto
V. P.
,
Doshi
B.
,
Hosseinzadeh
M.
,
Zare
E. N.
,
Environ. Sci. Pollut. Res.
,
2023
pg.
1
165.
Adimule
V.
,
Nandi
S. S.
,
Yallur
B. C.
,
Bhowmik
D.
,
Jagadeesha
A. H.
,
Mater. Today Chem.
,
2021
, vol.
20
pg.
100438
166.
Adimule
V.
,
Batakurki
S.
,
Yallur
B. C.
,
Keri
R.
,
J. Mater. Res.
,
2022
, vol.
37
pg.
2396
167.
Adimule
V.
,
Bhat
V. S.
,
Yallur
B. C.
,
Gowda
A. H. J.
,
De Padova
P.
,
Hegde
G.
,
Toghan
A.
,
Nanomater. Nanotechnol.
,
2022
, vol.
12
pg.
18479
168.
Adimule
V.
,
Yallur
B. C.
,
Gowda
A.
,
Anal. Bioanal. Electrochem.
,
2022
, vol.
14
pg.
1
169.
Adimule
V.
,
Bagihalli
G. B.
,
Unki
S. N.
,
Adv. Mater. Res.
,
2022
, vol.
1173
pg.
3
170.
Alharby
N. F.
,
Almutairi
R. S.
,
Mohamed
N. A.
,
Polymers
,
2021
, vol.
13
pg.
3659
171.
Salehi
E.
,
Daraei
P.
,
Shamsabadi
A. A.
,
Carbohydr. Polym.
,
2016
, vol.
152
pg.
419
172.
You
L.
,
Huang
C.
,
Lu
F.
,
Wang
A.
,
Liu
X.
,
Zhang
Q.
,
Int. J. Biol. Macromol.
,
2018
, vol.
107
pg.
1620
173.
Arabkhani
P.
,
Asfaram
A.
,
Ateia
M.
,
J. Water Process Eng.
,
2020
, vol.
38
pg.
101651
174.
Pang
Y. L.
,
Tan
J. H.
,
Lim
S.
,
Chong
W. C.
,
Polymers
,
2021
, vol.
13
17
pg.
3009
175.
Metin
A. U.
,
Çiftçi
H.
,
Alver
E.
,
Ind. Eng. Chem. Res.
,
2013
, vol.
52
31
pg.
10569
176.
Muinde
V. M.
,
Onyari
J. M.
,
Wamalwa
B.
,
Wabomba
J. N.
,
Environ. Chem. Ecotoxicol.
,
2020
, vol.
2
pg.
115
177.
Fatombi
J. K.
,
Idohou
E. A.
,
Osseni
S. A.
,
Agani
I.
,
Neumeyer
D.
,
Verelst
M.
,
Mauricot
R.
,
Aminou
T.
,
Fibers Polym.
,
2019
, vol.
20
pg.
1820
178.
Dotto
G. L.
,
Rodrigues
F. K.
,
Tanabe
E. H.
,
Fröhlich
R.
,
Bertuol
D. A.
,
Martins
T. R.
,
Foletto
E. L.
,
J. Environ. Chem. Eng.
,
2016
, vol.
4
3
pg.
3230
179.
Tran
H. V.
,
Bui
L. T.
,
Dinh
T. T.
,
Le
D. H.
,
Huynh
C. D.
,
Trinh
A. X.
,
Mater. Res. Express
,
2017
, vol.
4
3
pg.
035701
180.
Nga
N. K.
,
Chau
N. T. T.
,
Viet
P. H.
,
J. Sci.: Adv. Mater. Devices
,
2020
, vol.
5
1
pg.
65
181.
Anitha
T.
,
J. Water Process Eng.
,
2016
, vol.
13
pg.
127
182.
Wang
Y.
,
Wang
H.
,
Peng
H.
,
Wang
Z.
,
Wu
J.
,
Liu
Z.
,
Fibers Polym.
,
2018
, vol.
19
pg.
340
183.
Xie
J.
,
Li
C.
,
Chi
L.
,
Wu
D.
,
Fuel
,
2013
, vol.
103
pg.
480
184.
Kamal
M. A.
,
Bibi
S.
,
Bokhari
S. W.
,
Siddique
A. H.
,
Yasin
T.
,
React. Funct. Polym.
,
2017
, vol.
110
pg.
21
Close Modal

or Create an Account

Close Modal
Close Modal