Skip to Main Content
Skip Nav Destination
  • 2-chlorophenol (2-CP), 105

  • 2D black phosphorus, 171

  • 2D carbon nanosheets, 163–164

  • 2D carbon nanostructures, 161

    • 2D graphene, 161

      • 2D carbon nanosheets, 163–164

      • 2D graphene–metal oxide (MOx)-based nanotube networks for hybrid supercapacitors, 162–163

      • graphene conducting polymer composites, 162

      • nanotubular networks, 164

    • 2D nanomaterial transition metal dichalcogenides, 164

      • 2D metallic TMDs, 165–167

      • 2D TMD/carbonaceous material hybrids, 164–165

      • 2D transition metal oxide and hydroxide electrodes, 167–168

      • TMD/conductive polymer hybrids, 165

  • 2D graphene, 161

    • 2D carbon nanosheets, 163–164

    • graphene conducting polymer composites, 162

    • metal oxide-based nanotube networks for hybrid supercapacitors, 162–163

    • nanotubular networks, 164

  • 2D materials

    • in organic solar cells, 218–220

    • in perovskite solar cells, 220–221

  • 2D metal carbides, 210

  • 2D MXene, 169–170

  • 2D nanocomposites

    • for efficient energy conversion, 188

      • black phosphorus-based nanocomposites, 193–194

      • graphitic carbon nitride-based nanocomposites, 190–193

      • metal–organic framework-based 2D nanomaterials, 196–197

      • MXene-based nanocomposites, 194–196

    • electrocatalytic hydrogen gas evolution performance of, 190

  • 2D nanomaterial composites

    • for batteries, 147

      • aqueous multivalent metal–ion batteries, 152–158

      • monovalent metal–ion batteries, 147–152

    • for supercapacitor applications, 158

      • 2D black phosphorus, 171

      • 2D carbon nanostructures, 161–164

      • 2D nanomaterial transition metal dichalcogenides, 164–168

      • 2D transition metal nitrides, 170–171

      • with MXene/2D composite film electrodes, 168–170

    • via cost-effective and eco-friendly chemical routes, 141

      • bottom-up approaches, 143–145

      • rational design of 2D nanomaterial composites, 145–146

      • top-down methods, 142–143

  • 2D nanosheets (NSs), 160

  • 2D photocatalysts, 70, 88

  • 2D quantum spin Hall (QSH) insulator, 127

  • 2D transition metal hydroxides, 168

  • 2D transition metal nitrides, 170–171

  • 2D transition metal oxides, 167–168

  • 2-iodoacetamide, 298

  • 3D aerogels, 119

  • 4-tert-butylpyridine (TBP), 227

  • AAIBs. See aqueous aluminium-ion batteries (AAIBs)

  • absorbed photon-to-current efficiency (APCE), 89

  • absorption coefficient, 93

  • acceptors, 206

  • activated carbons, 236

  • adsorbate evolution mechanism (AEM), 39

  • adsorption, 236, 291

  • AEM. See adsorbate evolution mechanism (AEM)

  • aerogels, 120, 122

  • AFM. See atomic force microscopy (AFM)

  • AIBs. See artificial inorganic batteries (AIBs)

  • air pollution, 235

  • ALD. See atomic layer deposition (ALD)

  • alkali metal-induced phase transition, 124–125

  • alkali metal-ion batteries, 172

  • alloying, 131

  • aluminium oxide (Al2O3), 208

  • ammonia (NH3) production, 259

    • 2D nanomaterial-based electrocatalysts for, 268

    • 2D nanomaterial-based photocatalysts for, 267

    • 2D nanomaterial-based photoelectrocatalysts for, 272

    • electrocatalysis for, 266–272

    • photocatalysis for, 261–266

    • photoelectrocatalysis for, 272–274

  • amorphous boron nitride (a-BN), 49

  • APCE. See absorbed photon-to-current efficiency (APCE)

  • apparent quantum efficiency (AQE), 92

  • applied bias photon-to-current efficiency (ABPE), 89

  • AQE. See apparent quantum efficiency (AQE)

  • aqueous aluminium-ion batteries (AAIBs), 152

    • energy storage systems, 153

    • Fe–Co PBA multivoid nanoframe architecture performance for, 152

    • inorganic cathode, 153

    • material challenges, 153

    • tin oxide quantum dots and graphene, 152

  • aqueous calcium-ion batteries, 157

    • boron nitride monolayer, 157

    • molybdenum oxide, 157

    • organic cathode, 157–158

  • aqueous magnesium-ion batteries, 156

    • germanium anode, 156

    • synergy effect of hydrated ionic radius and oxidation state, 157

    • vanadium oxide, 156–157

  • aqueous multivalent metal-ion batteries, 152

    • aqueous aluminium-ion batteries, 152–153

    • aqueous calcium-ion batteries, 157–158

    • aqueous magnesium-ion batteries, 156–157

    • aqueous zinc-ion batteries, 153–156

  • aqueous zinc-ion batteries (AZIBs), 153

    • bilayered Ca0.26V2O5H2O and NVO@MXene electrode, 156

    • combination of 1T-MoS2 with ammonium vanadate, 153

    • galvanostatic intermittent titration technique, 156

    • MWCNTs@a-C@MoS2 cathode for, 156

    • oxygen-deficient ammonium vanadate/GO composites, 153

  • Argand depiction, 81

  • artificial inorganic batteries (AIBs), 153

  • asymmetric supercapacitor (ASC), 167

  • atomic force microscopy (AFM), 72

  • atomic layer deposition (ALD), 11

  • atrazine (ATZ), 111

  • AZIBs. See aqueous zinc-ion batteries (AZIBs)

  • ball milling, 142, 282, 294

  • band gap energy, 93–94

  • batteries, 69, 75, 147, 285

    • aqueous multivalent metal-ion batteries, 152–158

    • monovalent metal-ion batteries, 147–152

  • BCPs. See block copolymers (BCPs)

  • BET surface area. See Brunauer–Emmett–Teller (BET) surface area

  • biodegradable polymers, 142

  • bisphenol A (BPA), 105

  • black phosphorus (BP), 114, 210, 291

  • block copolymers (BCPs), 143

  • Bode plot, 81, 82

  • Boltzmann constant, 85, 87

  • boron nitride (BN), 49

  • bottom-up approach, 4, 143, 295

    • chemical vapour deposition, 143–144

    • hard and soft templating techniques, 144–145

    • reverse micelle methods, 145

    • sol–gel method, 144

    • solvothermal and hydrothermal methods, 144

  • bottom-up synthesis, 34

    • chemical vapor deposition, 35

    • plasma-enhanced pulsed laser deposition, 35–36

    • spray coating, 36

    • urea glass method, 34–35

  • BP. See black phosphorus (BP)

  • BPA. See bisphenol A (BPA)

  • Brunauer–Emmett–Teller (BET) surface area, 11, 72, 249

  • bulk heterojunction (BHJ) solar cells, 204

  • Butler–Volmer equation, 83

  • caesium, 207

  • calcination, 144

  • calcium-ion batteries (CIBs), 157

  • carbide-derived carbons (CDCs), 33

  • carbon-based materials, 196, 204

  • carbon capture and storage (CCS), 237

  • carbon dioxide (CO2), 235–236, 293

  • carbon dioxide reduction reaction (CO2RR), 288

  • carbon nanotubes (CNTs), 108, 239

  • carbon nitride (CN), 9, 248

  • carbon quantum dots, 225

  • carrier lifetime, 71–72

  • catalysis, 53

  • catalysts, 183, 292

  • cathode interfacial layer (CIL), 212

  • CB. See conduction band (CB)

  • CCS. See carbon capture and storage (CCS)

  • charge carriers, 73

  • chemical composition, 298

  • chemical exfoliation, 5–6, 146

  • chemical oxygen demand (COD), 108

  • chemical vapor deposition (CVD), 2, 6, 35, 143–144, 217, 295

  • chronoamperometry, 74

  • CIBs. See calcium-ion batteries (CIBs)

  • Clausius–Clapeyron equation, 133

  • CNTs. See carbon nanotubes (CNTs)

  • coaxial electrospinning, 142

  • cobalt ferrite (CoF), 169

  • Cole–Cole plot, 81

  • conducting polymers, 210

  • conduction band (CB), 92, 103, 223, 240

  • conduction band minimum (CBM), 224

  • conduction band offset (CBO), 87

  • conductive atomic force microscopy (CAFM), 117

  • conductive polymers (CPs), 165

  • Congo red (CR) dye, 108

  • Coulomb efficiency, 79

  • counter electrode, 33, 75

  • cubic boron nitride (c-BN), 49

  • CV. See cyclic voltammetry (CV)

  • CVD. See chemical vapor deposition (CVD)

  • cyclic voltammetry (CV), 69, 75

    • capacitance calculation, 77–78

    • energy density and power density calculation, 78

  • degree of exfoliation, 297

  • density functional theory (DFT), 115, 267, 288

  • dielectric materials, 52

  • diffuse reflectance spectrum (DRS), 93

  • diffusion coefficient, 80

  • dimethyl sulfoxide (DMSO), 34

  • dipole–dipole interactions, 293

  • donor/acceptor barrier, 205

  • donor polymers, 206

  • doping, 131, 246

  • double-layer capacitance, 75

  • drop-casting method, 205, 217

  • DRS. See diffuse reflectance spectrum (DRS)

  • dye-sensitized solar cell (DSSC), 208

  • dynamic light scattering, 73

  • ECSA. See electrochemical surface area (ECSA)

  • EIS. See electrochemical impedance spectroscopy (EIS)

  • electrocatalysis, 69, 70, 181, 244, 260, 266–272

  • electrocatalysts, 73, 266

  • electrochemical cell, 181

  • electrochemical double-layer capacitors (EDLCs), 75, 158

  • electrochemical etching method, 33–34

  • electrochemical impedance spectroscopy (EIS), 69, 80, 105, 193

    • exchange current, 84

    • Faradaic efficiency, 82

    • overpotential, 83

    • Tafel plots, 83–84

    • turnover frequency, 84–85

  • electrochemical surface area (ECSA), 72

  • electrode–electrolyte interface, 83

  • electron beam-controlled phase transition, 127–130

  • electron-donating groups (EDGs), 247

  • electron energy-loss spectroscopy, 74

  • electronic band structures, 70–71

  • electron-induced phase transition, 124

    • alkali metal-induced phase transition, 124–125

    • alloying and doping, 131

    • charge transfer-driven phase transition in donor–acceptor heterostructures, 125–127

    • chemically triggered phase transformation on 2D materials, 130–131

    • electron beam-controlled phase transition, 127–130

    • plasma thermoelectro-induced 2H–1T phase transition, 130

  • electron paramagnetic resonance (ESR) spectroscopy, 73, 267

  • electrons, 205

  • electron-transfer coefficient, 83

  • electron transport layer (ETL), 208, 215

  • electron-withdrawing groups (EWGs), 247

  • electrophotocatalysis, 181

  • electrospinning, 142

  • electrospraying, 218

  • energy density, 78

  • energy storage, 38–39

  • energy storage systems (ESSs), 153, 158

  • environmental remediation, 290–294

  • epitaxial growth, 6–7

  • epitaxial layer, 6

  • EQE. See external quantum efficiency (EQE)

  • equivalent series resistance (ESR), 82

  • Escherichia coli, 296

  • ESR. See equivalent series resistance (ESR)

  • ESR spectroscopy. See electron paramagnetic resonance (ESR) spectroscopy

  • ESSs. See energy storage systems (ESSs)

  • etching, 32–33

  • ethylene glycol (EG), 49

  • ETL. See electron transport layer (ETL)

  • exchange current, 84

  • exfoliation, 44–46

  • external quantum efficiency (EQE), 89, 91

  • fabrication technique, 209

  • face-centred cubic (FCC), 35

  • Faraday efficiency (FE), 82, 267

  • Fermi level, 48, 118, 126

  • fill factor (FF), 86–87, 214, 223

  • first-order phase transition, 130

  • fluorine-doped tin oxide (FTO), 205

  • formamidine, 207

  • Fourier transform infrared spectroscopy (FTIR), 74

  • Fowler–Nordheim tunneling theory, 117

  • Freundlich adsorption isotherms, 291

  • FTIR. See Fourier transform infrared spectroscopy (FTIR)

  • galvanostatic charge–discharge (GCD), 69, 78

    • Coulomb efficiency, 79

    • energy density and power density calculation, 79

  • galvanostatic intermittent titration technique, 156

  • gas-sensing layer, 122

  • gastrointestinal tract, 295

  • GCD. See galvanostatic charge–discharge (GCD)

  • gel, 144

  • geometric surface area (GSA), 72

  • germanium anode, 156

  • GHGs. See greenhouse gases (GHGs)

  • Gibbs free energy, 90, 132, 187, 193, 269

  • GO. See graphene oxide (GO)

  • gold nanoparticles (Au NPs), 130

  • GQDs. See graphene quantum dots (GQDs)

  • graphene, 2, 53, 108, 169, 210, 225, 226, 227, 244, 250, 287, 291

    • properties of, 4

    • synthesis of, 4

      • chemical exfoliation, 5–6

      • chemical vapor deposition, 6

      • epitaxial growth, 6–7

      • liquid-phase exfoliation, 5

      • mechanical exfoliation, 5

  • graphene-based hybrid photocatalysts, 105–106

  • graphene-based nanomaterials

    • CO2 capture and conversion, 236–238

    • graphene-based 2D material for CO2 capture and conversion, 244

      • graphene doped with heteroatoms, 245–247

      • metal oxide graphene composite, 248–250

      • MOF–graphene composites, 250–252

      • quantum dot graphene composites, 247–248

    • multidimensional materials, 238–239

    • role of nanomaterials and their photocatalytic and photoelectrocatalytic applications, 239

      • photocatalytic CO2 reduction, 241–243

      • photoelectrocatalysis, 243–244

  • graphene-intercalated compounds (GICs), 6

  • graphene oxide (GO), 2, 6, 7, 105, 210, 244, 249

    • properties of, 8

      • electric properties, 8

      • mechanical properties, 8

      • thermal properties, 8–9

    • synthesis of, 9

  • graphene quantum dots (GQDs), 245, 247

  • graphitic carbon nitride (g-C3N4), 2, 9, 102, 191

    • based hybrid photocatalysts, 106

    • preparation of, 10

      • exfoliation of bulk g-C3N4, 11

      • hard- and soft-template method, 10–11

      • template-free method, 11

    • properties of, 9–10

  • green ammonia, 92

  • greenhouse gases (GHGs), 237

  • GSA. See geometric surface area (GSA)

  • Haber–Bosch process, 92, 237, 260, 274

  • hard and soft templating techniques, 144–145

  • h-BN. See hexagonal boron nitride (h-BN)

  • Helmholtz–Perkin layer, 77

  • HER. See hydrogen evolution reaction (HER)

  • heterogeneous catalysis, 190, 260

  • heterogeneous photocatalysis, 187

  • hexagonal boron nitride (h-BN), 2, 49, 53, 114, 210, 280

    • applications of, 51

      • catalysis, 53

      • dielectric material, 52

      • protecting and passivating layer, 52

      • sensors, 52–53

      • substrates for graphene electronics, 51–52

      • tunnelling barrier, 52

    • electronic properties, 51

    • mechanical properties, 51

    • structure of, 50–51

    • synthesis methods of, 53

    • thermal properties, 51

  • high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), 42

  • highest occupied molecular orbital (HOMO), 205

  • hole transport layer (HTL), 208, 215

  • HOMO. See highest occupied molecular orbital (HOMO)

  • HOR. See hydrogen oxidation reaction (HOR)

  • hot electrons (HEs), 223

  • Hummers’ method, 8

  • hydrogen, 288

  • hydrogen evolution reaction (HER), 68, 123, 181–184, 288

  • hydrogen oxidation reaction (HOR), 182, 184

  • hydrothermal methods, 46, 144, 268

  • hydrothermal route, 46–48

  • incident photon-to-current efficiency (IPCE), 89

  • indium-doped tin oxide (ITO), 117, 205

  • indophenol blue method, 271

  • inorganic cathode, 153

  • in situ characterization techniques, 299

  • in situ epitaxial growth method, 195

  • in situ hydrothermal method, 107

  • intercalation, 34

  • internal quantum efficiency (IQE), 89

  • ion-intercalated exfoliation technique, 45

  • IQE. See internal quantum efficiency (IQE)

  • Kubelka and Munk (K–M) model, 94

  • Langmuir–Blodgett assembly, 212

  • Langmuir–Blodgett technique, 218

  • large-size graphene oxide (l-GO), 296

  • laser ablation, 143

  • lattice oxygen evolution mechanism (LOEM), 39

  • layer-dependent bandgap engineering, 114–117

  • layered double hydroxides (LDHs), 102, 170, 263

  • light-emitting diodes, 4

  • light-harvesting properties, 70

  • linear sweep voltammetry (LSV), 273

  • liquid-phase exfoliation (LPE), 4, 5, 282, 294, 299

  • lithium bis(trifluoromethane) sulfonimide (Li-TFSI), 227

  • lithium-ion batteries (LIBs), 38, 48

  • lithography, 142–143

  • LOEM. See lattice oxygen evolution mechanism (LOEM)

  • lowest unoccupied molecular orbital (LUMO), 205

  • LSV. See linear sweep voltammetry (LSV)

  • LUMO. See lowest unoccupied molecular orbital (LUMO)

  • MA. See methylammonium (MA)

  • manganese dioxide (MnO2), 41, 167

  • mass transport process, 73

  • MBenes, 287, 288

  • mechanical exfoliation, 5, 34, 146

  • membrane filtration, 290

  • mesoporous graphitic carbon nitride (m-gCN), 194

  • metal alkoxides, 144

  • metal-assisted chemical etching method, 272

  • metal clusters, 196

  • metal-ion batteries, 40

  • metal nitrides (MNs), 161

  • metal–organic frameworks (MOFs), 2, 102, 196, 236

    • graphene composites, 250–252

  • metal oxide graphene composite, 248–250

  • metal sulfide-based hybrid semiconductors, 106–107

  • metal sulfides, 37

  • methylammonium (MA), 207, 226

  • methylammonium lead iodide (CH3NH3PbI3), 208

  • methylene blue (MB), 109

  • microwave (MW), 146

  • microwave-assisted synthesis, 146

  • MMA-X, 119, 120

  • MMIBs. See monovalent metal-ion batteries (MMIBs)

  • mobility, 71–72

  • MOFs. See metal–organic frameworks (MOFs)

  • molybdenum disulfide (MoS2), 52, 214

  • molybdenum oxide (MoOx), 157

  • molybdenum telluride (MoTe2), 166

  • monovalent metal-ion batteries (MMIBs), 147

    • 2D coordination polymer-derived highly graphitized N-doped carbon nanosheets for effective metal–air batteries, 151

    • 2D TMD nanomaterials as cathodes for Li–S batteries, 149

    • 2D ZIF-derived ultrathin Cu–N/C nanosheets as high-performance Zn–air battery electrocatalysts, 151–152

    • Fe3Se4 decorating carbon nanotubes as anodes for SIBs, 149–150

    • high-performance anode material for Li/Na-ion batteries using two-dimensional AlB4, 148

    • Li-ion batteries using 2D biphenylene monolayer as anode, 150–151

    • MnPSe3 2D layer stacking composites as metal-ion battery anodes, 150

    • MoS2–C nanoparticles on two-dimensional graphene sheets as anodes in KIBs, 147

    • NiSe nanoparticle-embellished 2D carbon nanosheets as separator modification for high-efficiency LSBs, 149

    • two-dimensional carbon-supported MnO@C nanoparticles as anodes in LIBs, 147

    • two-dimensional nanosilicon anodes for LIBs, 147–148

    • two-dimensional sandwich-like MXene conductive polymer nanocomposite for LSBs, 148

  • multi-walled carbon nanotubes (MWCNTs), 164

  • MXene additives, 215–216

  • MXene aerogel (MA), 120, 121

  • MXenes, 2, 23, 53, 118, 119, 161, 168, 194, 195, 211, 216, 228, 287, 288, 289

    • applications of, 36

      • adsorption of pollutants, 36

      • energy storage, 38–39

      • photocatalytic CO2 reduction, 38

      • photocatalytic hydrogen evolution reaction, 37–38

    • definition of, 23–24

    • hexagonal boron nitride, 49

    • properties of, 25

      • electronic properties, 25–28

      • magnetic properties, 28–29

      • mechanical properties, 31–32

      • optical properties, 29–30

      • plasmonic properties, 30–31

    • structure of, 24–25

    • synthesis of, 32

      • bottom-up synthesis, 34–36

      • top-down methods, 32–34

  • nanomaterials, 141

  • nanotechnology, 239

  • nanotubular networks, 164

  • n-butyl lithium, 297

  • NDMA. See nitrosamine dimethylamine (NDMA)

  • Nessler’s reagent method, 263

  • next-generation lithography (NGL), 143

  • NGL. See next-generation lithography (NGL)

  • nitrides, 210

  • nitrogen oxides (NOx), 236

  • nitrogen reduction reaction (NRR), 68, 92, 266, 288

  • nitrosamine dimethylamine (NDMA), 111

  • N-methyl-2-pyrrolidone (NMP), 44

  • non-aqueous solvent, 46

  • non-Faradaic processes, 75

  • non-van der Waals layered (NvdW-L) materials, 280, 281, 298, 299

  • non-van der Waals non-layered (NvdW-NL) materials, 280, 281, 298, 299

  • NRR. See nitrogen reduction reaction (NRR)

  • Nyquist plots, 81, 82

  • OER. See oxygen evolution reaction (OER)

  • one-pot hydrothermal technique, 195

  • one-step hydrothermal method, 114

  • open circuit voltage (OPV), 81, 85–86

  • open circuit voltage deficit (VOC-def), 87–88

  • organic cathode, 157–158

  • organic linkers, 196

  • organic materials, 204

  • organic pollutants, 187, 291

  • organic solar cells (OSCs), 203, 204, 218–220

    • architectures of PSCs, 208–210

    • perovskite solar cells, 207–208

    • structure of, 205

    • types of, 204–206

    • working mechanism of, 206–207

  • ORR. See oxygen reduction reaction (ORR)

  • oscillatory Belousov–Zhabotinsky reaction, 8

  • OSCs. See organic solar cells (OSCs)

  • overpotential, 83

  • oxidative exfoliation-reduction method, 12

  • oxygen evolution reaction (OER), 39, 53, 68, 182, 288

  • oxygen reduction reaction (ORR), 68, 182

    • in acidic electrolyte, 185

    • in basic electrolyte, 185

  • PANI. See polyaniline (PANI)

  • partial density of states (PDOS), 47

  • partial water dissociation reaction, 188

  • particulate matter (PM), 236

  • PDOS. See partial density of states (PDOS)

  • PEDOT. See poly(3,4-ethylenedioxythiophene) (PEDOT)

  • PEPLD. See plasma-enhanced pulsed laser deposition (PEPLD)

  • perovskite solar cells (PSCs), 207–208, 220–221

    • architectures of, 208–210

    • structure of, 207

  • photocatalysis, 69, 70, 181, 239, 243, 260, 261–266, 292

    • definition of, 186

    • porous 2D materials for, 122–124

  • photocatalysts, 103, 243, 244

  • photocatalytic CO2 reduction, 38, 241–243

  • photocatalytic efficiency, 108

  • photocatalytic hydrogen evolution reaction, 37–38

  • photocatalytic process, 186–188

  • photoelectrocatalysis, 69, 70, 181, 241, 243–244, 260, 272–274

  • photoelectrochemical cell (PEC), 90, 241

  • photothermal effect, 195

  • photovoltaics, 70

  • piezoelectricity, 283–284

  • planar n–i–p architecture, 209

  • Planck’s constant, 93

  • plasma-enhanced pulsed laser deposition (PEPLD), 35–36

  • plasma-induced defect engineering, 270

  • PLD. See pulsed laser deposition (PLD)

  • PM. See particulate matter (PM)

  • p–n heterojunctions, 71, 104

  • polarization voltage, 83

  • poly(3,4-ethylenedioxythiophene) (PEDOT), 105

  • poly(vinylidene fluoride-co-hexafluoropropylene), 9

  • polyaniline (PANI), 8, 105, 161

  • polydimethylsiloxane (PDMS), 115

  • polypyrrole (PPy), 105, 161

  • polythiophene (PTh), 105, 161

  • polytriphenylamine (PTPAn), 157

  • polyurethane (PU), 8

  • polyvinyl alcohol (PVA), 8

  • porosity, 72–73

  • Portland cement, 294

  • power conversion efficiency (PCE), 87

  • power density calculation, 78

  • PPy. See polypyrrole (PPy)

  • pseudocapacitors, 77, 158

  • PTh. See polythiophene (PTh)

  • pulsed laser deposition (PLD), 2, 35

  • PVA. See polyvinyl alcohol (PVA)

  • QDs. See quantum dots (QDs)

  • quantum dot graphene composites, 247–248

  • quantum dots (QDs), 192

  • quantum wells, 223

  • Raman spectroscopy, 74, 115, 124

  • ranitidine (RAN), 111

  • rational design of 2D nanomaterial composites, 145

    • mechanical and chemical exfoliation, 146

    • microwave-assisted synthesis, 146

    • via cost-effective chemical routes, 146

    • via eco-friendly chemical routes, 146

  • reduced graphene oxide (rGO), 2, 7, 105, 152, 212, 245, 296

    • properties of, 8

      • electric properties, 8

      • mechanical properties, 8

      • thermal properties, 8–9

    • synthesis of, 9

  • reference electrode, 75

  • Ren method, 39

  • restacking, 74

  • reverse micelle methods, 145

  • reversible hydrogen electrode (RHE), 267

  • rGO. See reduced graphene oxide (rGO)

  • rhodamine B (RhB), 108

  • ruthenium-based materials, 260

  • scalability, 282

  • scanning electron microscopy (SEM), 72, 262

  • scanning transmission electron microscopy (STEM), 127

  • Schottky barrier, 113

  • Schottky junctions, 38, 71, 104

  • Scotch tape method, 69, 146, 282

  • SCs. See supercapacitors (SCs)

  • self-agglomeration, 74

  • self-assembly, 48–49

  • SEM. See scanning electron microscopy (SEM)

  • semiconductor-based nanocatalysts, 181

  • semiconductor materials, 114

  • sensors, 52–53

  • series resistance (Rs), 87

  • Shockley–Reid–Hall (SRH) recombination, 86

  • short circuit current (ISC), 86, 214, 223

  • SIBs. See sodium-ion batteries (SIBs)

  • silicon carbide (SiC), 6

  • sluggish process, 39

  • small-angle neutron scattering, 73

  • small-angle X-ray scattering, 73

  • small-size graphene oxide (s-GO), 296

  • SMT. See sulfamethazine (SMT)

  • SMX. See sulfamethoxazole (SMX)

  • sodium-ion batteries (SIBs), 39

  • solar cells, 4, 118, 203

  • solar spectrum, 107

  • sol–gel method, 144

  • solvothermal methods, 144, 210

  • solvothermal treatment, 265

  • specific surface area (SSA), 72

  • spin-coating method, 205, 217

  • spin–valley coupling (SVC), 18

  • SPM. See surface probe microscopy (SPM)

  • SPR. See surface plasmon resonance (SPR)

  • spray coating technique, 36, 213, 217

  • sputtering process, 143, 213

  • SSA. See specific surface area (SSA)

  • S-scheme, 104, 192

  • steam-reforming process, 260

  • STEM. See scanning transmission electron microscopy (STEM)

  • strain-induced phase transition, 132–134

  • successive ionic layer adsorption and reaction (SILAR), 192

  • sulfamethazine (SMT), 111

  • sulfamethoxazole (SMX), 111

  • sulfur dioxide (SO2), 236

  • supercapacitors (SCs), 68, 169, 172, 245, 287

    • applications, 158

      • 2D black phosphorus, 171

      • 2D carbon nanostructures, 161–164

      • 2D nanomaterial transition metal dichalcogenides, 164–168

      • 2D transition metal nitrides, 170–171

      • with MXene/2D composite film electrodes, 168–170

  • surface functionalization, 296, 298

  • surface modification, 213

  • surface plasmon resonance (SPR), 113

  • surface probe microscopy (SPM), 117

  • SVC. See spin–valley coupling (SVC)

  • synthesis routes, 44

    • exfoliation, 44–46

    • hydrothermal route, 46–48

    • self-assembly, 48–49

  • Tafel plots, 83–84

  • Tafel reaction, 183

  • Tafel slope, 84

  • tantalum carbide (TaC), 35

  • Tauc–Kubelka–Munk relationship, 94

  • TC. See tetracycline (TC)

  • TEM. See transmission electron microscopy (TEM)

  • template-free method, 11

  • Terminalia arjuna, 105

  • tert-butyl lithium, 297

  • tetraalkylammonium hydroxides, 34

  • tetracycline (TC), 109, 111

  • tetramethylammonium hydroxide (TMAH), 46

  • thermal resistance, 236

  • thiamethoxam (TM), 108

  • three-dimensional (3D) materials, 2

  • three-dimensional (3D) metal–organic frameworks, 236

  • time-resolved photoluminescence spectroscopy (TPRL), 73

  • tin oxide quantum dots (SnO2 QDs), 152

  • titanium dioxide (TiO2), 41, 241

  • TMAH. See tetramethylammonium hydroxide (TMAH)

  • TMDs. See transition metal dichalcogenides (TMDs)

  • TMOs. See transition metal oxides (TMOs)

  • top-down approach, 4, 7, 9, 32, 142, 294–295

    • ball milling, 142

    • electrochemical etching, 33–34

    • electrospinning, 142

    • etching, 32–33

    • intercalation, 34

    • laser ablation, 143

    • lithography, 142–143

    • mechanical exfoliation, 34

    • sputtering, 143

  • total organic carbon (TOC), 105

  • transition metal dichalcogenides (TMDs), 2, 12, 39, 53, 102, 161, 169–170, 210, 211, 214–215, 280, 287

    • correlation between monolayer count and band structure of, 17–20

    • electronic structure and properties of, 15–17

    • general and current development in synthesis of, 21–23

  • transition metal nitrides (TMNs), 170

  • transition metal oxides (TMOs), 2, 53, 193, 288

  • transmission electron microscopy (TEM), 72, 109, 262

  • transparent conducting oxide (TCO), 205

  • transparent conductive electrodes (TCE), 210

  • triazine, 191

  • tri-s-triazine, 191

  • Triton X-100, 11

  • tungsten carbide (WC), 35

  • tunnelling barrier, 52

  • turnover frequency (TOF), 84–85

  • two-dimensional MgB2, 289

  • two-dimensional (2D) nanomaterials, 1, 69, 103, 181, 197, 238, 252, 279

    • 2D nanocomposites for efficient energy conversion, 188

      • black phosphorus-based nanocomposites, 193–194

      • graphitic carbon nitride-based nanocomposites, 190–193

      • metal–organic framework-based 2D nanomaterials, 196–197

      • MXene-based nanocomposites, 194–196

    • bandgap engineering of 2D semiconductor materials, 114

      • layer-dependent bandgap engineering, 114–117

      • solar-to-chemical energy conversion by, 117–118

    • basics and scalable synthesis methods, 280

      • synthesis methods, 281–283

    • biocompatibility of, 280

    • as charge transport layers, 211

      • graphene and derivatives, 211–214

      • MXene additives, 215–216

      • transition metal dichalcogenides, 214–215

    • composites as ETL in perovskite solar cells, 221–226

    • composites as HTL in perovskite solar cells, 226–228

    • as electrocatalysts, photocatalysts, and photoelectrocatalysts, 70

      • abundant surface active sites, 73

      • alleviated restacking, 74

      • carrier lifetime and mobility, 71–72

      • electronic band structures, 70–71

      • excellent electronic conductivity, 73

      • high electrochemically active surface area, 72

      • kinetics of ions/charge carriers, 73

      • light-harvesting properties, 70

      • porosity, 72–73

      • stability, 74

    • electrochemical profile evaluation, 75

      • cyclic voltammetry, 75–78

      • electrochemical impedance spectroscopy, 80–85

      • galvanostatic charge–discharge, 78–79

    • energy and environmental prospectives, 283

      • energy applications, 283–290

      • environmental remediation, 290–294

    • environmental impact of, 295–298

    • environmental impact of synthesis processes of, 294

      • bottom-up approaches, 295

      • top-down approaches, 294–295

    • fundamental electro-, photoelectro-, and photocatalytic energy applications, 181

      • mechanism of HER, 183–184

      • mechanism of HOR, 184

      • mechanism of OER, 186

      • mechanism of ORR, 185–186

      • photocatalytic process, 186–188

    • graphene, 2–7

    • graphene oxide and reduced graphene oxide, 7–9

    • graphitic carbon nitride, 9

      • conclusion for, 11–12

      • preparation of, 10–11

      • properties of, 9–10

    • hexagonal boron nitride, 49

      • applications of, 51–53

      • properties of, 51

      • structure of, 50–51

      • synthesis methods of, 53

    • hybridization of 2D semiconductor nanomaterials with other nanomaterials, 103

      • graphene-based hybrid photocatalysts, 105–106

      • graphitic carbon nitride-based hybrid photocatalysts, 106

      • hybridization with inorganic semiconductors, 111–113

      • hybridization with metals, 113–114

      • metal–organic framework-based hybrid semiconductors, 111

      • metal sulfide-based hybrid semiconductors, 106–107

      • MoS2-based hybrid semiconductors, 107–110

    • key photovoltaic parameters, 85

      • fill factor, 86–87

      • open circuit voltage, 85–86

      • open circuit voltage deficit, 87–88

      • power conversion efficiency, 87

      • series resistance, 87

      • short circuit current, 86

    • MXenes, 23

      • applications of, 36–39

      • definition of, 23–24

      • properties of, 25–32

      • structure of, 24–25

      • synthesis of, 32–36

    • in organic solar cells, 218–220

    • in perovskite solar cells, 220–221

    • photochemical profile evaluation, 88

      • calculation of band gap energy, 93–94

      • definitions of different photocatalytic efficiencies, 89

      • solar energy to ammonia conversion efficiency, 92

      • solar to hydrogen efficiency, 89–91

    • photoelectrochemical profile evaluation, 94

    • structural engineering of 2D semiconductor nanomaterials, 118

      • electron-induced phase transition, 124–131

      • heterostructure formation to make 3D structure, 118–122

      • phase transition in 2D materials, 124

      • porous 2D materials for photocatalysis, 122–124

      • strain-induced phase transition, 132–134

    • transition metal dichalcogenides, 12

      • correlation between monolayer count and band structure of, 17–20

      • electronic structure and properties of, 15–17

      • general and current development in synthesis of, 21–23

    • transition metal oxides, 39

      • crystal structure of 2D layered TMOs, 41–42

      • optical and electronic properties of, 42–44

      • synthesis routes, 44–49

  • type I heterojunctions, 71, 104

  • type II heterojunctions, 71, 104

  • type III heterojunctions, 71, 104

  • ultrasonic exfoliation method, 214

  • ultrasound, 45

  • urea glass method, 34–35

  • valence band (VB), 92, 103, 223, 240

  • vanadium oxide (VOx), 156–157

  • van der Waals (vdW) forces, 2, 3, 74

  • van der Waals layered (vdW-L) materials, 280

  • VB. See valence band (VB)

  • volatile organic compounds (VOCs), 106, 236, 293

  • Volmer–Heyrovsky mechanism, 183

  • Volmer step, 183

  • Volmer–Tafel mechanism, 183

  • voltammogram trace, 75

  • water electrolysis systems, 69

  • water splitting reaction, 188

  • Watt–Chrisp method, 265, 271

  • wet milling, 282

  • working electrode, 33, 75

  • wurtzite boron nitride (w-BN), 49

  • XBenes, 288, 294

  • Xie’s method, 39

  • XPS. See X-ray photoelectron spectroscopy (XPS)

  • X-ray diffraction (XRD),192, 265

  • X-ray photoelectron spectroscopy (XPS), 72–73

  • XRD. See X-ray diffraction (XRD)

  • zeolites, 236

  • zero-bandgap material, 4

  • Z-schemes, 71, 104, 108, 192

Close Modal

or Create an Account

Close Modal
Close Modal