Subject Index
-
Published:04 Apr 2025
-
Special Collection: 2025 eBook Collection
Next-generation 2D Nanomaterials for Sustainable Energy and Environment-oriented Applications
Download citation file:
-
2-chlorophenol (2-CP), 105
-
2D black phosphorus, 171
-
2D carbon nanosheets, 163–164
-
2D carbon nanostructures, 161
-
2D graphene, 161
-
2D carbon nanosheets, 163–164
-
2D graphene–metal oxide (MOx)-based nanotube networks for hybrid supercapacitors, 162–163
-
graphene conducting polymer composites, 162
-
nanotubular networks, 164
-
-
2D nanomaterial transition metal dichalcogenides, 164
-
2D metallic TMDs, 165–167
-
2D TMD/carbonaceous material hybrids, 164–165
-
2D transition metal oxide and hydroxide electrodes, 167–168
-
TMD/conductive polymer hybrids, 165
-
-
-
2D graphene, 161
-
2D carbon nanosheets, 163–164
-
graphene conducting polymer composites, 162
-
metal oxide-based nanotube networks for hybrid supercapacitors, 162–163
-
nanotubular networks, 164
-
-
2D materials
-
in organic solar cells, 218–220
-
in perovskite solar cells, 220–221
-
-
2D metal carbides, 210
-
2D MXene, 169–170
-
2D nanocomposites
-
for efficient energy conversion, 188
-
black phosphorus-based nanocomposites, 193–194
-
graphitic carbon nitride-based nanocomposites, 190–193
-
metal–organic framework-based 2D nanomaterials, 196–197
-
MXene-based nanocomposites, 194–196
-
-
electrocatalytic hydrogen gas evolution performance of, 190
-
-
2D nanomaterial composites
-
for batteries, 147
-
aqueous multivalent metal–ion batteries, 152–158
-
monovalent metal–ion batteries, 147–152
-
-
for supercapacitor applications, 158
-
2D black phosphorus, 171
-
2D carbon nanostructures, 161–164
-
2D nanomaterial transition metal dichalcogenides, 164–168
-
2D transition metal nitrides, 170–171
-
with MXene/2D composite film electrodes, 168–170
-
-
via cost-effective and eco-friendly chemical routes, 141
-
bottom-up approaches, 143–145
-
rational design of 2D nanomaterial composites, 145–146
-
top-down methods, 142–143
-
-
-
2D nanosheets (NSs), 160
-
2D photocatalysts, 70, 88
-
2D quantum spin Hall (QSH) insulator, 127
-
2D transition metal hydroxides, 168
-
2D transition metal nitrides, 170–171
-
2D transition metal oxides, 167–168
-
2-iodoacetamide, 298
-
3D aerogels, 119
-
4-tert-butylpyridine (TBP), 227
-
AAIBs. See aqueous aluminium-ion batteries (AAIBs)
-
absorbed photon-to-current efficiency (APCE), 89
-
absorption coefficient, 93
-
acceptors, 206
-
activated carbons, 236
-
adsorbate evolution mechanism (AEM), 39
-
adsorption, 236, 291
-
AEM. See adsorbate evolution mechanism (AEM)
-
aerogels, 120, 122
-
AFM. See atomic force microscopy (AFM)
-
AIBs. See artificial inorganic batteries (AIBs)
-
air pollution, 235
-
ALD. See atomic layer deposition (ALD)
-
alkali metal-induced phase transition, 124–125
-
alkali metal-ion batteries, 172
-
alloying, 131
-
aluminium oxide (Al2O3), 208
-
ammonia (NH3) production, 259
-
2D nanomaterial-based electrocatalysts for, 268
-
2D nanomaterial-based photocatalysts for, 267
-
2D nanomaterial-based photoelectrocatalysts for, 272
-
electrocatalysis for, 266–272
-
photocatalysis for, 261–266
-
photoelectrocatalysis for, 272–274
-
-
amorphous boron nitride (a-BN), 49
-
APCE. See absorbed photon-to-current efficiency (APCE)
-
apparent quantum efficiency (AQE), 92
-
applied bias photon-to-current efficiency (ABPE), 89
-
AQE. See apparent quantum efficiency (AQE)
-
aqueous aluminium-ion batteries (AAIBs), 152
-
energy storage systems, 153
-
Fe–Co PBA multivoid nanoframe architecture performance for, 152
-
inorganic cathode, 153
-
material challenges, 153
-
tin oxide quantum dots and graphene, 152
-
-
aqueous calcium-ion batteries, 157
-
boron nitride monolayer, 157
-
molybdenum oxide, 157
-
organic cathode, 157–158
-
-
aqueous magnesium-ion batteries, 156
-
germanium anode, 156
-
synergy effect of hydrated ionic radius and oxidation state, 157
-
vanadium oxide, 156–157
-
-
aqueous multivalent metal-ion batteries, 152
-
aqueous aluminium-ion batteries, 152–153
-
aqueous calcium-ion batteries, 157–158
-
aqueous magnesium-ion batteries, 156–157
-
aqueous zinc-ion batteries, 153–156
-
-
aqueous zinc-ion batteries (AZIBs), 153
-
bilayered Ca0.26V2O5H2O and NVO@MXene electrode, 156
-
combination of 1T-MoS2 with ammonium vanadate, 153
-
galvanostatic intermittent titration technique, 156
-
MWCNTs@a-C@MoS2 cathode for, 156
-
oxygen-deficient ammonium vanadate/GO composites, 153
-
-
Argand depiction, 81
-
artificial inorganic batteries (AIBs), 153
-
asymmetric supercapacitor (ASC), 167
-
atomic force microscopy (AFM), 72
-
atomic layer deposition (ALD), 11
-
atrazine (ATZ), 111
-
AZIBs. See aqueous zinc-ion batteries (AZIBs)
-
ball milling, 142, 282, 294
-
band gap energy, 93–94
-
batteries, 69, 75, 147, 285
-
aqueous multivalent metal-ion batteries, 152–158
-
monovalent metal-ion batteries, 147–152
-
-
BCPs. See block copolymers (BCPs)
-
BET surface area. See Brunauer–Emmett–Teller (BET) surface area
-
biodegradable polymers, 142
-
bisphenol A (BPA), 105
-
black phosphorus (BP), 114, 210, 291
-
block copolymers (BCPs), 143
-
Bode plot, 81, 82
-
Boltzmann constant, 85, 87
-
boron nitride (BN), 49
-
bottom-up approach, 4, 143, 295
-
chemical vapour deposition, 143–144
-
hard and soft templating techniques, 144–145
-
reverse micelle methods, 145
-
sol–gel method, 144
-
solvothermal and hydrothermal methods, 144
-
-
bottom-up synthesis, 34
-
chemical vapor deposition, 35
-
plasma-enhanced pulsed laser deposition, 35–36
-
spray coating, 36
-
urea glass method, 34–35
-
-
BP. See black phosphorus (BP)
-
BPA. See bisphenol A (BPA)
-
Brunauer–Emmett–Teller (BET) surface area, 11, 72, 249
-
bulk heterojunction (BHJ) solar cells, 204
-
Butler–Volmer equation, 83
-
caesium, 207
-
calcination, 144
-
calcium-ion batteries (CIBs), 157
-
carbide-derived carbons (CDCs), 33
-
carbon-based materials, 196, 204
-
carbon capture and storage (CCS), 237
-
carbon dioxide (CO2), 235–236, 293
-
carbon dioxide reduction reaction (CO2RR), 288
-
carbon nanotubes (CNTs), 108, 239
-
carbon nitride (CN), 9, 248
-
carbon quantum dots, 225
-
carrier lifetime, 71–72
-
catalysis, 53
-
catalysts, 183, 292
-
cathode interfacial layer (CIL), 212
-
CB. See conduction band (CB)
-
CCS. See carbon capture and storage (CCS)
-
charge carriers, 73
-
chemical composition, 298
-
chemical exfoliation, 5–6, 146
-
chemical oxygen demand (COD), 108
-
chemical vapor deposition (CVD), 2, 6, 35, 143–144, 217, 295
-
chronoamperometry, 74
-
CIBs. See calcium-ion batteries (CIBs)
-
Clausius–Clapeyron equation, 133
-
CNTs. See carbon nanotubes (CNTs)
-
coaxial electrospinning, 142
-
cobalt ferrite (CoF), 169
-
Cole–Cole plot, 81
-
conducting polymers, 210
-
conduction band (CB), 92, 103, 223, 240
-
conduction band minimum (CBM), 224
-
conduction band offset (CBO), 87
-
conductive atomic force microscopy (CAFM), 117
-
conductive polymers (CPs), 165
-
Congo red (CR) dye, 108
-
Coulomb efficiency, 79
-
counter electrode, 33, 75
-
cubic boron nitride (c-BN), 49
-
CV. See cyclic voltammetry (CV)
-
CVD. See chemical vapor deposition (CVD)
-
cyclic voltammetry (CV), 69, 75
-
capacitance calculation, 77–78
-
energy density and power density calculation, 78
-
-
degree of exfoliation, 297
-
density functional theory (DFT), 115, 267, 288
-
dielectric materials, 52
-
diffuse reflectance spectrum (DRS), 93
-
diffusion coefficient, 80
-
dimethyl sulfoxide (DMSO), 34
-
dipole–dipole interactions, 293
-
donor/acceptor barrier, 205
-
donor polymers, 206
-
doping, 131, 246
-
double-layer capacitance, 75
-
drop-casting method, 205, 217
-
DRS. See diffuse reflectance spectrum (DRS)
-
dye-sensitized solar cell (DSSC), 208
-
dynamic light scattering, 73
-
ECSA. See electrochemical surface area (ECSA)
-
EIS. See electrochemical impedance spectroscopy (EIS)
-
electrocatalysis, 69, 70, 181, 244, 260, 266–272
-
electrocatalysts, 73, 266
-
electrochemical cell, 181
-
electrochemical double-layer capacitors (EDLCs), 75, 158
-
electrochemical etching method, 33–34
-
electrochemical impedance spectroscopy (EIS), 69, 80, 105, 193
-
exchange current, 84
-
Faradaic efficiency, 82
-
overpotential, 83
-
Tafel plots, 83–84
-
turnover frequency, 84–85
-
-
electrochemical surface area (ECSA), 72
-
electrode–electrolyte interface, 83
-
electron beam-controlled phase transition, 127–130
-
electron-donating groups (EDGs), 247
-
electron energy-loss spectroscopy, 74
-
electronic band structures, 70–71
-
electron-induced phase transition, 124
-
alkali metal-induced phase transition, 124–125
-
alloying and doping, 131
-
charge transfer-driven phase transition in donor–acceptor heterostructures, 125–127
-
chemically triggered phase transformation on 2D materials, 130–131
-
electron beam-controlled phase transition, 127–130
-
plasma thermoelectro-induced 2H–1T phase transition, 130
-
-
electron paramagnetic resonance (ESR) spectroscopy, 73, 267
-
electrons, 205
-
electron-transfer coefficient, 83
-
electron transport layer (ETL), 208, 215
-
electron-withdrawing groups (EWGs), 247
-
electrophotocatalysis, 181
-
electrospinning, 142
-
electrospraying, 218
-
energy density, 78
-
energy storage, 38–39
-
energy storage systems (ESSs), 153, 158
-
environmental remediation, 290–294
-
epitaxial growth, 6–7
-
epitaxial layer, 6
-
EQE. See external quantum efficiency (EQE)
-
equivalent series resistance (ESR), 82
-
Escherichia coli, 296
-
ESR. See equivalent series resistance (ESR)
-
ESR spectroscopy. See electron paramagnetic resonance (ESR) spectroscopy
-
ESSs. See energy storage systems (ESSs)
-
etching, 32–33
-
ethylene glycol (EG), 49
-
ETL. See electron transport layer (ETL)
-
exchange current, 84
-
exfoliation, 44–46
-
external quantum efficiency (EQE), 89, 91
-
fabrication technique, 209
-
face-centred cubic (FCC), 35
-
Faraday efficiency (FE), 82, 267
-
Fermi level, 48, 118, 126
-
fill factor (FF), 86–87, 214, 223
-
first-order phase transition, 130
-
fluorine-doped tin oxide (FTO), 205
-
formamidine, 207
-
Fourier transform infrared spectroscopy (FTIR), 74
-
Fowler–Nordheim tunneling theory, 117
-
Freundlich adsorption isotherms, 291
-
FTIR. See Fourier transform infrared spectroscopy (FTIR)
-
galvanostatic charge–discharge (GCD), 69, 78
-
Coulomb efficiency, 79
-
energy density and power density calculation, 79
-
-
galvanostatic intermittent titration technique, 156
-
gas-sensing layer, 122
-
gastrointestinal tract, 295
-
GCD. See galvanostatic charge–discharge (GCD)
-
gel, 144
-
geometric surface area (GSA), 72
-
germanium anode, 156
-
GHGs. See greenhouse gases (GHGs)
-
Gibbs free energy, 90, 132, 187, 193, 269
-
GO. See graphene oxide (GO)
-
gold nanoparticles (Au NPs), 130
-
GQDs. See graphene quantum dots (GQDs)
-
graphene, 2, 53, 108, 169, 210, 225, 226, 227, 244, 250, 287, 291
-
properties of, 4
-
synthesis of, 4
-
chemical exfoliation, 5–6
-
chemical vapor deposition, 6
-
epitaxial growth, 6–7
-
liquid-phase exfoliation, 5
-
mechanical exfoliation, 5
-
-
-
graphene-based hybrid photocatalysts, 105–106
-
graphene-based nanomaterials
-
CO2 capture and conversion, 236–238
-
graphene-based 2D material for CO2 capture and conversion, 244
-
graphene doped with heteroatoms, 245–247
-
metal oxide graphene composite, 248–250
-
MOF–graphene composites, 250–252
-
quantum dot graphene composites, 247–248
-
-
multidimensional materials, 238–239
-
role of nanomaterials and their photocatalytic and photoelectrocatalytic applications, 239
-
photocatalytic CO2 reduction, 241–243
-
photoelectrocatalysis, 243–244
-
-
-
graphene-intercalated compounds (GICs), 6
-
graphene oxide (GO), 2, 6, 7, 105, 210, 244, 249
-
properties of, 8
-
electric properties, 8
-
mechanical properties, 8
-
thermal properties, 8–9
-
-
synthesis of, 9
-
-
graphene quantum dots (GQDs), 245, 247
-
graphitic carbon nitride (g-C3N4), 2, 9, 102, 191
-
based hybrid photocatalysts, 106
-
preparation of, 10
-
exfoliation of bulk g-C3N4, 11
-
hard- and soft-template method, 10–11
-
template-free method, 11
-
-
properties of, 9–10
-
-
green ammonia, 92
-
greenhouse gases (GHGs), 237
-
GSA. See geometric surface area (GSA)
-
Haber–Bosch process, 92, 237, 260, 274
-
hard and soft templating techniques, 144–145
-
h-BN. See hexagonal boron nitride (h-BN)
-
Helmholtz–Perkin layer, 77
-
HER. See hydrogen evolution reaction (HER)
-
heterogeneous catalysis, 190, 260
-
heterogeneous photocatalysis, 187
-
hexagonal boron nitride (h-BN), 2, 49, 53, 114, 210, 280
-
applications of, 51
-
catalysis, 53
-
dielectric material, 52
-
protecting and passivating layer, 52
-
sensors, 52–53
-
substrates for graphene electronics, 51–52
-
tunnelling barrier, 52
-
-
electronic properties, 51
-
mechanical properties, 51
-
structure of, 50–51
-
synthesis methods of, 53
-
thermal properties, 51
-
-
high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), 42
-
highest occupied molecular orbital (HOMO), 205
-
hole transport layer (HTL), 208, 215
-
HOMO. See highest occupied molecular orbital (HOMO)
-
HOR. See hydrogen oxidation reaction (HOR)
-
hot electrons (HEs), 223
-
Hummers’ method, 8
-
hydrogen, 288
-
hydrogen evolution reaction (HER), 68, 123, 181–184, 288
-
hydrogen oxidation reaction (HOR), 182, 184
-
hydrothermal methods, 46, 144, 268
-
hydrothermal route, 46–48
-
incident photon-to-current efficiency (IPCE), 89
-
indium-doped tin oxide (ITO), 117, 205
-
indophenol blue method, 271
-
inorganic cathode, 153
-
in situ characterization techniques, 299
-
in situ epitaxial growth method, 195
-
in situ hydrothermal method, 107
-
intercalation, 34
-
internal quantum efficiency (IQE), 89
-
ion-intercalated exfoliation technique, 45
-
IQE. See internal quantum efficiency (IQE)
-
Kubelka and Munk (K–M) model, 94
-
Langmuir–Blodgett assembly, 212
-
Langmuir–Blodgett technique, 218
-
large-size graphene oxide (l-GO), 296
-
laser ablation, 143
-
lattice oxygen evolution mechanism (LOEM), 39
-
layer-dependent bandgap engineering, 114–117
-
layered double hydroxides (LDHs), 102, 170, 263
-
light-emitting diodes, 4
-
light-harvesting properties, 70
-
linear sweep voltammetry (LSV), 273
-
liquid-phase exfoliation (LPE), 4, 5, 282, 294, 299
-
lithium bis(trifluoromethane) sulfonimide (Li-TFSI), 227
-
lithium-ion batteries (LIBs), 38, 48
-
lithography, 142–143
-
LOEM. See lattice oxygen evolution mechanism (LOEM)
-
lowest unoccupied molecular orbital (LUMO), 205
-
LSV. See linear sweep voltammetry (LSV)
-
LUMO. See lowest unoccupied molecular orbital (LUMO)
-
MA. See methylammonium (MA)
-
manganese dioxide (MnO2), 41, 167
-
mass transport process, 73
-
MBenes, 287, 288
-
mechanical exfoliation, 5, 34, 146
-
membrane filtration, 290
-
mesoporous graphitic carbon nitride (m-gCN), 194
-
metal alkoxides, 144
-
metal-assisted chemical etching method, 272
-
metal clusters, 196
-
metal-ion batteries, 40
-
metal nitrides (MNs), 161
-
metal–organic frameworks (MOFs), 2, 102, 196, 236
-
graphene composites, 250–252
-
-
metal oxide graphene composite, 248–250
-
metal sulfide-based hybrid semiconductors, 106–107
-
metal sulfides, 37
-
methylammonium (MA), 207, 226
-
methylammonium lead iodide (CH3NH3PbI3), 208
-
methylene blue (MB), 109
-
microwave (MW), 146
-
microwave-assisted synthesis, 146
-
MMA-X, 119, 120
-
MMIBs. See monovalent metal-ion batteries (MMIBs)
-
mobility, 71–72
-
MOFs. See metal–organic frameworks (MOFs)
-
molybdenum disulfide (MoS2), 52, 214
-
molybdenum oxide (MoOx), 157
-
molybdenum telluride (MoTe2), 166
-
monovalent metal-ion batteries (MMIBs), 147
-
2D coordination polymer-derived highly graphitized N-doped carbon nanosheets for effective metal–air batteries, 151
-
2D TMD nanomaterials as cathodes for Li–S batteries, 149
-
2D ZIF-derived ultrathin Cu–N/C nanosheets as high-performance Zn–air battery electrocatalysts, 151–152
-
Fe3Se4 decorating carbon nanotubes as anodes for SIBs, 149–150
-
high-performance anode material for Li/Na-ion batteries using two-dimensional AlB4, 148
-
Li-ion batteries using 2D biphenylene monolayer as anode, 150–151
-
MnPSe3 2D layer stacking composites as metal-ion battery anodes, 150
-
MoS2–C nanoparticles on two-dimensional graphene sheets as anodes in KIBs, 147
-
NiSe nanoparticle-embellished 2D carbon nanosheets as separator modification for high-efficiency LSBs, 149
-
two-dimensional carbon-supported MnO@C nanoparticles as anodes in LIBs, 147
-
two-dimensional nanosilicon anodes for LIBs, 147–148
-
two-dimensional sandwich-like MXene conductive polymer nanocomposite for LSBs, 148
-
-
multi-walled carbon nanotubes (MWCNTs), 164
-
MXene additives, 215–216
-
MXene aerogel (MA), 120, 121
-
MXenes, 2, 23, 53, 118, 119, 161, 168, 194, 195, 211, 216, 228, 287, 288, 289
-
applications of, 36
-
adsorption of pollutants, 36
-
energy storage, 38–39
-
photocatalytic CO2 reduction, 38
-
photocatalytic hydrogen evolution reaction, 37–38
-
-
definition of, 23–24
-
hexagonal boron nitride, 49
-
properties of, 25
-
electronic properties, 25–28
-
magnetic properties, 28–29
-
mechanical properties, 31–32
-
optical properties, 29–30
-
plasmonic properties, 30–31
-
-
structure of, 24–25
-
synthesis of, 32
-
bottom-up synthesis, 34–36
-
top-down methods, 32–34
-
-
-
nanomaterials, 141
-
nanotechnology, 239
-
nanotubular networks, 164
-
n-butyl lithium, 297
-
NDMA. See nitrosamine dimethylamine (NDMA)
-
Nessler’s reagent method, 263
-
next-generation lithography (NGL), 143
-
NGL. See next-generation lithography (NGL)
-
nitrides, 210
-
nitrogen oxides (NOx), 236
-
nitrogen reduction reaction (NRR), 68, 92, 266, 288
-
nitrosamine dimethylamine (NDMA), 111
-
N-methyl-2-pyrrolidone (NMP), 44
-
non-aqueous solvent, 46
-
non-Faradaic processes, 75
-
non-van der Waals layered (NvdW-L) materials, 280, 281, 298, 299
-
non-van der Waals non-layered (NvdW-NL) materials, 280, 281, 298, 299
-
NRR. See nitrogen reduction reaction (NRR)
-
Nyquist plots, 81, 82
-
OER. See oxygen evolution reaction (OER)
-
one-pot hydrothermal technique, 195
-
one-step hydrothermal method, 114
-
open circuit voltage (OPV), 81, 85–86
-
open circuit voltage deficit (VOC-def), 87–88
-
organic cathode, 157–158
-
organic linkers, 196
-
organic materials, 204
-
organic pollutants, 187, 291
-
organic solar cells (OSCs), 203, 204, 218–220
-
architectures of PSCs, 208–210
-
perovskite solar cells, 207–208
-
structure of, 205
-
types of, 204–206
-
working mechanism of, 206–207
-
-
ORR. See oxygen reduction reaction (ORR)
-
oscillatory Belousov–Zhabotinsky reaction, 8
-
OSCs. See organic solar cells (OSCs)
-
overpotential, 83
-
oxidative exfoliation-reduction method, 12
-
oxygen evolution reaction (OER), 39, 53, 68, 182, 288
-
oxygen reduction reaction (ORR), 68, 182
-
in acidic electrolyte, 185
-
in basic electrolyte, 185
-
-
PANI. See polyaniline (PANI)
-
partial density of states (PDOS), 47
-
partial water dissociation reaction, 188
-
particulate matter (PM), 236
-
PDOS. See partial density of states (PDOS)
-
PEDOT. See poly(3,4-ethylenedioxythiophene) (PEDOT)
-
PEPLD. See plasma-enhanced pulsed laser deposition (PEPLD)
-
perovskite solar cells (PSCs), 207–208, 220–221
-
architectures of, 208–210
-
structure of, 207
-
-
photocatalysis, 69, 70, 181, 239, 243, 260, 261–266, 292
-
definition of, 186
-
porous 2D materials for, 122–124
-
-
photocatalysts, 103, 243, 244
-
photocatalytic CO2 reduction, 38, 241–243
-
photocatalytic efficiency, 108
-
photocatalytic hydrogen evolution reaction, 37–38
-
photocatalytic process, 186–188
-
photoelectrocatalysis, 69, 70, 181, 241, 243–244, 260, 272–274
-
photoelectrochemical cell (PEC), 90, 241
-
photothermal effect, 195
-
photovoltaics, 70
-
piezoelectricity, 283–284
-
planar n–i–p architecture, 209
-
Planck’s constant, 93
-
plasma-enhanced pulsed laser deposition (PEPLD), 35–36
-
plasma-induced defect engineering, 270
-
PLD. See pulsed laser deposition (PLD)
-
PM. See particulate matter (PM)
-
p–n heterojunctions, 71, 104
-
polarization voltage, 83
-
poly(3,4-ethylenedioxythiophene) (PEDOT), 105
-
poly(vinylidene fluoride-co-hexafluoropropylene), 9
-
polyaniline (PANI), 8, 105, 161
-
polydimethylsiloxane (PDMS), 115
-
polypyrrole (PPy), 105, 161
-
polythiophene (PTh), 105, 161
-
polytriphenylamine (PTPAn), 157
-
polyurethane (PU), 8
-
polyvinyl alcohol (PVA), 8
-
porosity, 72–73
-
Portland cement, 294
-
power conversion efficiency (PCE), 87
-
power density calculation, 78
-
PPy. See polypyrrole (PPy)
-
pseudocapacitors, 77, 158
-
PTh. See polythiophene (PTh)
-
pulsed laser deposition (PLD), 2, 35
-
PVA. See polyvinyl alcohol (PVA)
-
QDs. See quantum dots (QDs)
-
quantum dot graphene composites, 247–248
-
quantum dots (QDs), 192
-
quantum wells, 223
-
Raman spectroscopy, 74, 115, 124
-
ranitidine (RAN), 111
-
rational design of 2D nanomaterial composites, 145
-
mechanical and chemical exfoliation, 146
-
microwave-assisted synthesis, 146
-
via cost-effective chemical routes, 146
-
via eco-friendly chemical routes, 146
-
-
reduced graphene oxide (rGO), 2, 7, 105, 152, 212, 245, 296
-
properties of, 8
-
electric properties, 8
-
mechanical properties, 8
-
thermal properties, 8–9
-
-
synthesis of, 9
-
-
reference electrode, 75
-
Ren method, 39
-
restacking, 74
-
reverse micelle methods, 145
-
reversible hydrogen electrode (RHE), 267
-
rGO. See reduced graphene oxide (rGO)
-
rhodamine B (RhB), 108
-
ruthenium-based materials, 260
-
scalability, 282
-
scanning electron microscopy (SEM), 72, 262
-
scanning transmission electron microscopy (STEM), 127
-
Schottky barrier, 113
-
Schottky junctions, 38, 71, 104
-
Scotch tape method, 69, 146, 282
-
SCs. See supercapacitors (SCs)
-
self-agglomeration, 74
-
self-assembly, 48–49
-
SEM. See scanning electron microscopy (SEM)
-
semiconductor-based nanocatalysts, 181
-
semiconductor materials, 114
-
sensors, 52–53
-
series resistance (Rs), 87
-
Shockley–Reid–Hall (SRH) recombination, 86
-
short circuit current (ISC), 86, 214, 223
-
SIBs. See sodium-ion batteries (SIBs)
-
silicon carbide (SiC), 6
-
sluggish process, 39
-
small-angle neutron scattering, 73
-
small-angle X-ray scattering, 73
-
small-size graphene oxide (s-GO), 296
-
SMT. See sulfamethazine (SMT)
-
SMX. See sulfamethoxazole (SMX)
-
sodium-ion batteries (SIBs), 39
-
solar cells, 4, 118, 203
-
solar spectrum, 107
-
sol–gel method, 144
-
solvothermal methods, 144, 210
-
solvothermal treatment, 265
-
specific surface area (SSA), 72
-
spin-coating method, 205, 217
-
spin–valley coupling (SVC), 18
-
SPM. See surface probe microscopy (SPM)
-
SPR. See surface plasmon resonance (SPR)
-
spray coating technique, 36, 213, 217
-
sputtering process, 143, 213
-
SSA. See specific surface area (SSA)
-
S-scheme, 104, 192
-
steam-reforming process, 260
-
STEM. See scanning transmission electron microscopy (STEM)
-
strain-induced phase transition, 132–134
-
successive ionic layer adsorption and reaction (SILAR), 192
-
sulfamethazine (SMT), 111
-
sulfamethoxazole (SMX), 111
-
sulfur dioxide (SO2), 236
-
supercapacitors (SCs), 68, 169, 172, 245, 287
-
applications, 158
-
2D black phosphorus, 171
-
2D carbon nanostructures, 161–164
-
2D nanomaterial transition metal dichalcogenides, 164–168
-
2D transition metal nitrides, 170–171
-
with MXene/2D composite film electrodes, 168–170
-
-
-
surface functionalization, 296, 298
-
surface modification, 213
-
surface plasmon resonance (SPR), 113
-
surface probe microscopy (SPM), 117
-
SVC. See spin–valley coupling (SVC)
-
synthesis routes, 44
-
exfoliation, 44–46
-
hydrothermal route, 46–48
-
self-assembly, 48–49
-
-
Tafel plots, 83–84
-
Tafel reaction, 183
-
Tafel slope, 84
-
tantalum carbide (TaC), 35
-
Tauc–Kubelka–Munk relationship, 94
-
TC. See tetracycline (TC)
-
TEM. See transmission electron microscopy (TEM)
-
template-free method, 11
-
Terminalia arjuna, 105
-
tert-butyl lithium, 297
-
tetraalkylammonium hydroxides, 34
-
tetracycline (TC), 109, 111
-
tetramethylammonium hydroxide (TMAH), 46
-
thermal resistance, 236
-
thiamethoxam (TM), 108
-
three-dimensional (3D) materials, 2
-
three-dimensional (3D) metal–organic frameworks, 236
-
time-resolved photoluminescence spectroscopy (TPRL), 73
-
tin oxide quantum dots (SnO2 QDs), 152
-
titanium dioxide (TiO2), 41, 241
-
TMAH. See tetramethylammonium hydroxide (TMAH)
-
TMDs. See transition metal dichalcogenides (TMDs)
-
TMOs. See transition metal oxides (TMOs)
-
top-down approach, 4, 7, 9, 32, 142, 294–295
-
ball milling, 142
-
electrochemical etching, 33–34
-
electrospinning, 142
-
etching, 32–33
-
intercalation, 34
-
laser ablation, 143
-
lithography, 142–143
-
mechanical exfoliation, 34
-
sputtering, 143
-
-
total organic carbon (TOC), 105
-
transition metal dichalcogenides (TMDs), 2, 12, 39, 53, 102, 161, 169–170, 210, 211, 214–215, 280, 287
-
correlation between monolayer count and band structure of, 17–20
-
electronic structure and properties of, 15–17
-
general and current development in synthesis of, 21–23
-
-
transition metal nitrides (TMNs), 170
-
transition metal oxides (TMOs), 2, 53, 193, 288
-
transmission electron microscopy (TEM), 72, 109, 262
-
transparent conducting oxide (TCO), 205
-
transparent conductive electrodes (TCE), 210
-
triazine, 191
-
tri-s-triazine, 191
-
Triton X-100, 11
-
tungsten carbide (WC), 35
-
tunnelling barrier, 52
-
turnover frequency (TOF), 84–85
-
two-dimensional MgB2, 289
-
two-dimensional (2D) nanomaterials, 1, 69, 103, 181, 197, 238, 252, 279
-
2D nanocomposites for efficient energy conversion, 188
-
black phosphorus-based nanocomposites, 193–194
-
graphitic carbon nitride-based nanocomposites, 190–193
-
metal–organic framework-based 2D nanomaterials, 196–197
-
MXene-based nanocomposites, 194–196
-
-
bandgap engineering of 2D semiconductor materials, 114
-
layer-dependent bandgap engineering, 114–117
-
solar-to-chemical energy conversion by, 117–118
-
-
basics and scalable synthesis methods, 280
-
synthesis methods, 281–283
-
-
biocompatibility of, 280
-
as charge transport layers, 211
-
graphene and derivatives, 211–214
-
MXene additives, 215–216
-
transition metal dichalcogenides, 214–215
-
-
composites as ETL in perovskite solar cells, 221–226
-
composites as HTL in perovskite solar cells, 226–228
-
as electrocatalysts, photocatalysts, and photoelectrocatalysts, 70
-
abundant surface active sites, 73
-
alleviated restacking, 74
-
carrier lifetime and mobility, 71–72
-
electronic band structures, 70–71
-
excellent electronic conductivity, 73
-
high electrochemically active surface area, 72
-
kinetics of ions/charge carriers, 73
-
light-harvesting properties, 70
-
porosity, 72–73
-
stability, 74
-
-
electrochemical profile evaluation, 75
-
cyclic voltammetry, 75–78
-
electrochemical impedance spectroscopy, 80–85
-
galvanostatic charge–discharge, 78–79
-
-
energy and environmental prospectives, 283
-
energy applications, 283–290
-
environmental remediation, 290–294
-
-
environmental impact of, 295–298
-
environmental impact of synthesis processes of, 294
-
bottom-up approaches, 295
-
top-down approaches, 294–295
-
-
fundamental electro-, photoelectro-, and photocatalytic energy applications, 181
-
mechanism of HER, 183–184
-
mechanism of HOR, 184
-
mechanism of OER, 186
-
mechanism of ORR, 185–186
-
photocatalytic process, 186–188
-
-
graphene, 2–7
-
graphene oxide and reduced graphene oxide, 7–9
-
graphitic carbon nitride, 9
-
conclusion for, 11–12
-
preparation of, 10–11
-
properties of, 9–10
-
-
hexagonal boron nitride, 49
-
applications of, 51–53
-
properties of, 51
-
structure of, 50–51
-
synthesis methods of, 53
-
-
hybridization of 2D semiconductor nanomaterials with other nanomaterials, 103
-
graphene-based hybrid photocatalysts, 105–106
-
graphitic carbon nitride-based hybrid photocatalysts, 106
-
hybridization with inorganic semiconductors, 111–113
-
hybridization with metals, 113–114
-
metal–organic framework-based hybrid semiconductors, 111
-
metal sulfide-based hybrid semiconductors, 106–107
-
MoS2-based hybrid semiconductors, 107–110
-
-
key photovoltaic parameters, 85
-
fill factor, 86–87
-
open circuit voltage, 85–86
-
open circuit voltage deficit, 87–88
-
power conversion efficiency, 87
-
series resistance, 87
-
short circuit current, 86
-
-
MXenes, 23
-
applications of, 36–39
-
definition of, 23–24
-
properties of, 25–32
-
structure of, 24–25
-
synthesis of, 32–36
-
-
in organic solar cells, 218–220
-
in perovskite solar cells, 220–221
-
photochemical profile evaluation, 88
-
calculation of band gap energy, 93–94
-
definitions of different photocatalytic efficiencies, 89
-
solar energy to ammonia conversion efficiency, 92
-
solar to hydrogen efficiency, 89–91
-
-
photoelectrochemical profile evaluation, 94
-
structural engineering of 2D semiconductor nanomaterials, 118
-
electron-induced phase transition, 124–131
-
heterostructure formation to make 3D structure, 118–122
-
phase transition in 2D materials, 124
-
porous 2D materials for photocatalysis, 122–124
-
strain-induced phase transition, 132–134
-
-
transition metal dichalcogenides, 12
-
correlation between monolayer count and band structure of, 17–20
-
electronic structure and properties of, 15–17
-
general and current development in synthesis of, 21–23
-
-
transition metal oxides, 39
-
crystal structure of 2D layered TMOs, 41–42
-
optical and electronic properties of, 42–44
-
synthesis routes, 44–49
-
-
-
type I heterojunctions, 71, 104
-
type II heterojunctions, 71, 104
-
type III heterojunctions, 71, 104
-
ultrasonic exfoliation method, 214
-
ultrasound, 45
-
urea glass method, 34–35
-
valence band (VB), 92, 103, 223, 240
-
vanadium oxide (VOx), 156–157
-
van der Waals (vdW) forces, 2, 3, 74
-
van der Waals layered (vdW-L) materials, 280
-
VB. See valence band (VB)
-
volatile organic compounds (VOCs), 106, 236, 293
-
Volmer–Heyrovsky mechanism, 183
-
Volmer step, 183
-
Volmer–Tafel mechanism, 183
-
voltammogram trace, 75
-
water electrolysis systems, 69
-
water splitting reaction, 188
-
Watt–Chrisp method, 265, 271
-
wet milling, 282
-
working electrode, 33, 75
-
wurtzite boron nitride (w-BN), 49
-
XBenes, 288, 294
-
Xie’s method, 39
-
XPS. See X-ray photoelectron spectroscopy (XPS)
-
X-ray diffraction (XRD),192, 265
-
X-ray photoelectron spectroscopy (XPS), 72–73
-
XRD. See X-ray diffraction (XRD)
-
zeolites, 236
-
zero-bandgap material, 4
-
Z-schemes, 71, 104, 108, 192