Skip to Main Content
Skip Nav Destination
  • 1,4-bis(aminomethyl)benzene, 65

  • 1,4-butanediol, 162

  • 1,4-hexamethylene diisocynate (HMDI), 192

  • 1,5-pentanediamine, 329

  • 1,6-diiodohexane, 99

  • 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO), 85, 183, 243

  • 2,2-dithiodibenzoic acid (DTSA), 116

  • 2,5-furandicarboxylic acid (FDCA), 164

  • 2-aminoethanethiol, 110

  • 2-hydroxyethyl methacrylate, 66

  • 2-mercaptoethanol, 65

  • 2-ureido-4-[1H]-pyrimidione, 97

  • 3-aminopropyl triethoxysilane (APTES), 192

  • 3-carboxylphenylboronic acid, 108

  • 3-hydroxypropionic acid, 160

  • 3-mercaptopropionic acid (MPA), 50, 99

  • 3-mercaptopropyl triethoxysilane (MPTES), 192

  • 3-methyl-tetrahydrofuran (3-MTHF), 161

  • 3Rs, 290–291

  • 3-(glycidyloxypropyl)trimethoxysilane, 81

  • 4,4-diaminodiphenyl methane (DDM), 113

  • 4,4-dithiodianiline (DDD), 113

  • 4,4-methylene bis(phenyl isocyanate) (MDI), 192

  • 4-acetaminophen (ACM), 123

  • 4-aminophenol, 56

  • 4-aminophenyl disulfide (APDS), 94

  • 4-carboxylphenylboronic acid pinacol ester (CAPE), 89

  • 4-formylbenzene boronic acid (FBA), 109

  • 4-hydroxybenzaldehyde, 56

  • 4-phenyl-1,2,4-triazoline-3,5-dione (TAD), 121

  • 5-benzyl-3,6-dioxo-2-piperpiperazineacetic acid (DKP), 123

  • 7Rs, 291

  • 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO), 116

  • 15-pentamethylene diisocyanate (PDI), 168

  • α-tocopherol, 210

  • β-hydroxyl ester group, 47

  • β-ketoesters, 64

  • π–π interaction, 190

  • AAE. See adipic acid ester (AAE)

  • AAP. See adipic acid polyester (AAP)

  • abrasion resistance, 293

  • ACM. See acrylic rubber (ACM)

  • acrylic elastomer, 360

  • acrylic rubber (ACM), 244–245

  • acrylonitrile–butadiene rubber (NBR), 361

  • activation energy, 78

  • adipic acid ester (AAE), 375

  • adipic acid polyester (AAP), 375

  • AFM. See atomic force microscopy (AFM)

  • aggregation-induced emission (AIE) technique, 39, 126

  • agricultural wastes, 196

  • AIE technique. See aggregation-induced emission (AIE) technique

  • alcohols, 8

  • Alder-ene reaction, 171

  • alkyl sulfonamines, 10

  • amino-functionalized polyhedral oligomeric silsesquioxane (POSS-NH2), 90

  • Amyris’s technology, 161

  • aniline trimer (ACAT), 109

  • ARISA. See automated ribosomal intergenic spacer analysis (ARISA)

  • Arrhenius equation, 39, 40, 349

  • Arrhenius law, 39

  • Arrhenius viscosity-temperature relationship, 37, 39

  • associative CANs, 36, 37

  • atomic force microscopy (AFM), 233

  • automated ribosomal intergenic spacer analysis (ARISA), 20

  • benzaldehyde, 117

  • benzo[a]pyrene (BaP), 304

  • benzo[e]pyrene (BeP), 304

  • benzo[ j]fluoranthene (BjFa), 304

  • benzo[k]fluoranthene (BkFa), 304

  • benzophenone (BP), 108

  • benzoyl peroxide (BPO), 6–7

  • BIIR. See brominated isobutylene–isoprene rubber (BIIR)

  • bio-based elastomers, 160

    • bio-based chemicals, 160

    • bio-based synthetic elastomers, 160

      • bio-itaconate elastomers, 166–167

      • butadiene rubber, 162–163

      • EPDM rubber, 163

      • isoprene rubber, 161–162

      • polyester elastomers, 163–166

      • polyurethane elastomers, 167–170

    • natural elastomers, 170

      • Eucommia ulmoides gum, 170–171

      • guayule rubber, 173–175

      • natural rubber, 170

      • TKS, 171–173

  • bio-based ethylene, 163

  • biobased fillers, 84–88

  • bio-based ingredients, 213

  • bio-based polyamide fibre, 329

  • biobased polyester elastomer (BPE), 163, 237

  • bio-based polyurethane elastomers, 167–170

  • bio-based synthetic elastomers, 300–301

  • bio-based thermoplastic polyester elastomers (bio-TPEEs), 164

  • bio-based TPVs, 246–247

  • biocarbon, 194

  • biochar, 194–196

  • bio-itaconate elastomers, 166–167

  • biological devulcanization, 25

  • biomass-derived fillers

    • biochar, 194–196

    • lignin, 185

      • dry mixing, 186–189

      • hybrid fillers, 190–191

      • latex co-precipitation, 189–190

      • structure and morphology of, 185–186

    • nanocellulose, 180

      • fiber–filled rubber composites, 181–185

      • structure and morphology of, 180–181

    • polysaccharides, 191

      • chitin, 193

      • chitosan, 193–194

      • starch, 191–193

    • rice husk silica, 196–197

  • biomass energy, 159

  • bio-oil, 375

  • bioremediation, 4

  • bis(phenylboronic acid carbamoyl) cystamine (BPBAC), 108

  • bismaleimides (BM), 42

  • bis(3-triethoxysilyl propyl) tetrasulfide (TESPT), 8, 192

  • blends, 367–371

  • blooming effect, 240

  • B–O exchange chemistry, 52–54

  • boronic ester exchange, 89–90

  • boronic esters, 52, 53

  • boron nitride (BN), 83–84

  • boroxine units, 53

  • BP. See benzophenone (BP)

  • BPE. See biobased polyester elastomer (BPE)

  • BPO. See benzoyl peroxide (BPO)

  • BR. See butyl rubber (BR)

  • brominated isobutylene–isoprene rubber (BIIR), 224, 239

  • Brønsted acids, 47, 60

  • butyl rubber (BR), 10

  • CANs. See covalent adaptable networks (CANs)

  • cantilever beam vibrational measurement, 344

  • capacitive sensors, 272–273

  • carbonaceous fillers, 78–81

  • carbon black (CB), 80, 179, 204, 293, 351, 371

  • carbon dots (CDs), 49, 205, 212, 327

  • carbon nanodots (CDs), 78

  • carbon nanotubes (CNTs), 116–119, 143, 240, 298

  • carboxylated nitrile–butadiene rubber (HXNBR), 351

  • carboxylated nitrile rubber (XNBR), 347, 351, 366–367, 376

  • carboxyl group-grafted SBR (CSBR), 81

  • carboxyl-modified nanocellulose, 183–184

  • carboxymethyl chitosan (CMCS), 84, 95, 194

  • catalysts, 169

  • catalytic transesterification chemistry, 49

  • CB. See carbon black (CB)

  • CD. See crosslinking degree (CD)

  • CDs. See carbon dots (CDs)

  • CE. See circular economy (CE)

  • cellulose, 180

  • cellulose nanocrystals (CNCs), 180, 181, 182, 324–325

  • cellulose nanocrystals (CNs), 84–85

  • cellulose nanofibers (CNFs), 180, 181, 324–325

  • cellulose nanowhiskers, 324

  • chemical devulcanization systems, 7–10

  • chemical treatment, 7

  • chitin, 193

  • chitin nanocrystal (CNC), 95

  • chitosan, 193–194

  • chlorinated NBR (Cl-NBR), 365

  • chlorinated polyethylene (CPE), 360

  • chlorination, 365

  • chloroprene (CR), 368

  • chrysene (CHR), 304

  • circular economy (CE), 289

    • 3R concept, 290–291

    • limitations of 3R concept and updated 7R concept, 291–292

  • citric acid (CA), 184

  • citric acid-modified bentonite (CABt), 83

  • clay, 319–320

  • click reaction, 121

  • CMCS. See carboxymethyl chitosan (CMCS)

  • CNFs. See cellulose nanofibers (CNFs)

  • CNs. See cellulose nanocrystals (CNs)

  • C–N transalkylation, 92

  • CNTs. See carbon nanotubes (CNTs)

  • coconut oils (CO), 209

  • cold drawing, 233

  • compounding, 293

  • copper(ii)-complex catalysts, 46

  • covalent adaptable networks (CANs), 34, 109, 119

    • categories of, 35–36

    • viscoelastic properties of, 36–40

  • covalent bonds, 121

  • CPE. See chlorinated polyethylene (CPE)

  • cradle to cradle approaches, 34

  • crosslinking, 137

  • crosslinking degree (CD), 223, 226

  • crosslinking kinetics (CK), 226

  • cyclohexylamine (CYC), 326

  • cystamine dihydrochloride, 108

  • DA. See dopamine (DA)

  • DADS. See diallyl disulfides (DADS)

  • DAE. See distillate aromatic extract (DAE)

  • dandelion rubber (DR), 297–298

  • DCBs. See dynamic covalent bonds (DCBs)

  • DCC. See dynamic covalent chemistry (DCC)

  • DCP. See dicumyl peroxide (DCP)

  • DCRs. See dynamically crosslinked rubbers (DCRs)

  • DEAs. See dielectric elastomer actuators (DEAs)

  • deep eutectic solvent (DES), 10

  • degradation process, 115

  • degree of devulcanization, 12

  • DEGs. See dielectric elastomer generators (DEGs)

  • de-N-alkylation, 92

  • DES. See deep eutectic solvent (DES)

  • DETs. See dielectric elastomer transducers (DETs)

  • Deutsche Industrie Normen (DIN), 298

  • devulcanization, 4

    • biological method of, 20

    • by bioremediation, 18–20

  • devulcanization processes, 33

  • diallyl disulfides (DADS), 11

  • diarylsemipinacol (DASP), 108

  • dibenzo[a,h]anthracene (DBahA), 304

  • dibutyl phthalate (DBP), 375

  • dicumyl peroxide (DCP), 208, 227

  • dicyclohexylamine (DIC), 326

  • dielectric elastomer, 275

  • dielectric elastomer actuators (DEAs), 269–272

  • dielectric elastomer generators (DEGs), 273–276

  • dielectric elastomers, 261

    • capacitive light emitting devices, 278–279

    • in capacitive sensors, 272–273

    • dielectric elastomer actuators, 269–272

    • dielectric elastomer generators, 273–276

    • in solid-state cooling, 276–277

    • synthesis of polar elastomers, 263–269

    • for thermal energy harvesting, 277–278

  • dielectric elastomer transducers (DETs), 260

  • dielectric losses, 262

  • dielectric permittivity, 265, 270, 273, 280

  • Diels-Alder (D-A) reaction, 40–45, 66, 115, 140, 194

  • diene rubbers, 314

  • dimethyl ester (DMFD), 164

  • dimethyl silicone rubber (DMQ), 242

  • dioctyl adipate (DOA), 375

  • dioctyl phthalate (DOP), 375

  • dioctyl terephthalate (DOTP), 375

  • dioxaborolanes, 52

  • diphenyl disulfide (DPDS), 6, 22–23

  • diphenylguanidine (DPG), 309

  • dissociative CANs, 36

  • distillate aromatic extract (DAE), 303

  • disulfide-containing boronic ester (DEDA), 108

  • disulfide exchange, 94–95

  • disulfide exchange chemistry, 45–47

  • dithiodianiline, 46

  • dithiodibenzoic acid, 46

  • DMTA. See dynamic mechanical thermal analysis (DMTA)

  • dopamine (DA), 311

  • DOTP. See dioctyl terephthalate (DOTP)

  • DPDS. See diphenyl disulfide (DPDS)

  • DR. See dandelion rubber (DR)

  • dry ice, 21

  • dry mixing, 186–189

  • dynamically crosslinked rubbers (DCRs), 76

    • dynamic covalent bond-mediated interface in, 77

      • boronic ester exchange, 89–90

      • C–N transalkylation, 92

      • disulfide exchange, 94–95

      • imine metathesis, 88–89

      • transamination, 90–92

      • transesterification, 78–88

      • trans-oxyalkylation, 92–94

    • dynamic non-covalent bond-mediated interface in, 95

      • hydrogen bond, 95–97

      • metal–ligand interaction, 97–99

      • other non-covalent interactions, 99–102

  • dynamic covalent bonds (DCBs), 77, 107, 137

    • combination of two or more dynamic covalent bonds, 107

      • as chain extenders, 114–116

      • in one rubber network, 108–114

      • in rubber matrix and rubber/filler interface, 116–119

    • and physical bonds, 120

      • hydrogen bonds, 120–124

      • ionic bonds, 126–129

      • metal–ligand coordination bonds, 124–126

    • and static covalent bonds, 119–120

  • dynamic covalent chemistry (DCC), 34

    • concept of, 34–35

    • covalent adaptable networks, 35

      • categories of, 35–36

      • viscoelastic properties of, 36–40

    • in rubber networks, 40

      • B–O exchange chemistry, 52–54

      • Diels–Alder chemistry, 40–45

      • disulfide exchange chemistry, 45–47

      • dynamic isocyanate chemistry, 61–64

      • imine exchange chemistry, 54–57

      • other dynamic covalent chemistries, 65–66

      • Si–O exchange chemistry, 59–61

      • transalkylation chemistry, 57–59

      • transamination chemistry of vinylogous urethane, 64–65

      • transesterification, 47–52

  • dynamic crosslinked networks, 129

  • dynamic crosslinkers, 76

  • dynamic imine bonds, 116

  • dynamic isocyanate chemistry, 61–64

  • dynamic mechanical analysis (DMA), 300

  • dynamic mechanical thermal analysis (DMTA), 308, 343, 344

  • dynamic vulcanization process, 221

  • EACO. See epoxy acetylated castor oil (EACO)

  • EBCO. See epoxy benzoyl castor oil (EBCO)

  • EDS. See energy dispersive spectroscopy (EDS)

  • eggshell, 326

  • elasticity, 234–235

  • elastocaloric effect, 276

  • elastomers, 259

  • electrocaloric refrigeration, 276

  • electromechanical instability (EMI), 270, 271

  • electronic skin, 279

  • electron-induced reactive processing, 221

  • electron induced reactive processing (EIReP), 240

  • EMI. See electromechanical instability (EMI)

  • energy consumption, 4

  • energy dispersive spectroscopy (EDS), 205

  • energy recovery, 291

  • ENR. See epoxidized natural rubber (ENR)

  • entropy-driven elasticity, 260

  • EPDM. See ethylene propylene diene monomer (EPDM); ethylene-propylene-diene monomer (EPDM)

  • EPM. See ethylene–propylene rubber (EPM)

  • EPO. See epoxidized palm oil (EPO)

  • epoxidation, 365–366

  • epoxidized boron nitride (EBN), 83

  • epoxidized butadiene rubber (EBR), 311

  • epoxidized natural rubber (ENR), 43, 49, 78, 108, 142, 170, 182, 225, 241–242, 295, 301–303, 365

  • epoxidized palm oil (EPO), 308

  • epoxidized polyisoprene (EPI), 80

  • epoxy acetylated castor oil (EACO), 376

  • epoxy benzoyl castor oil (EBCO), 376

  • Escherichia coli, 161

  • esterification-modified nanocellulose, 184–185

  • ester-type thermoplastic polyurethane (TPU-EX), 352

  • ether-type thermoplastic polyurethane (TPU-ER), 352

  • ethylenemethyl acrylate-glycidyl methacrylate terpolymer (EMA-co-GMA), 243

  • ethylene propylene diene monomer (EPDM), 163, 219

  • ethylene–propylene–diene monomer (EPDM), 204, 240–241, 295, 299

  • ethylene/propylene rubber (EPR), 42

  • ethylene–propylene rubber (EPM), 108, 140

  • ethylene-vinyl acetate (EVA), 42, 244

  • ethylene-vinyl acetate rubber (EVM), 245–246

  • Eucommia ulmoides gum (EUG), 170, 295, 298–299

  • EVA. See ethylene-vinyl acetate (EVA)

  • FA. See furfuryl amine (FA)

  • fibre reinforced polymers (FRPs), 354

  • filler–filler interactions, 355

  • fillers, 179, 314, 371–376

    • bioresourced fillers, 322

      • cellulose nanocrystals and cellulose nanofibres, 324–325

      • eggshell, 326

      • green silica, 323

      • lignin, 323–324

      • starch, 325–326

    • clay, 319–320

    • graphitic materials, 320

    • hybrid fillers, 322

    • MXene, 320–321

    • silica, 317–319

    • sustainable carbonaceous materials, 315–317

  • Flori–Stockmeyer gel theory, 151

  • fluorocarbon elastomer (FKM), 360

  • frequency-temperature equivalence, 344

  • FRPs. See fibre reinforced polymers (FRPs)

  • fuel economy, 330

  • furan-maleimide reactions, 42, 43

  • furfuryl amine (FA), 376

  • Gibbs free energy, 347

  • GNR. See guayule natural rubber (GNR)

  • GO. See graphene oxide (GO)

  • GR. See guayule rubber (GR)

  • Gram-negative bacteria, 20

  • graphene, 81, 116

  • graphene nanoplate (GnP), 81

  • graphene oxide (GO), 83, 191, 351, 374

  • graphite, 322

  • graphitic materials, 320

  • green chemical devulcanization systems, 4

    • chemical devulcanization systems, 7–10

    • devulcanization by bioremediation, 18–20

    • pros and cons of commonly used devulcanizing agents, 23–24

    • rubber devulcanization technologies, 5–7

    • supercritical fluid medium for chemical devulcanization, 20–23

    • thermo-oxidative devulcanization, 13–18

  • green functional ingredients

    • activators for rubber vulcanization, 203–206

    • antioxidants for rubber protection, 209–213

    • processing oil for rubber compounding, 206–209

  • greenhouse gas (GHG) emissions, 288–289

  • green silica, 323

  • green tyres, 287

    • challenges and perspectives, 332–333

    • circular economy, 289

      • 3R concept, 290–291

      • limitations of 3R concept and updated 7R concept, 291–292

    • economic assessment of green tyre production, 330

      • cost effectiveness by replacing commercial silica with waste‑based silica, 330–331

      • fuel economy, 330

      • production cost, 330

    • environmental impact of, 288

      • emission of greenhouse gas, 288–289

      • microplastics, 289

    • global tyre consumption and market, 287–288

    • significance of, 292–293

    • sustainable ingredients for compounding green tyres, 293

      • fillers, 314–326

      • reversible crosslinking strategy, 309–314

      • sustainable alternatives of accelerators and activators, 326–327

      • sustainable alternatives of traditional tyre cords, 327–330

      • sustainable rubbers for, 295–309

  • ground tire rubber (GTR), 5

    • green chemical devulcanization of, 11

    • microwave devulcanization of, 12

    • thermo-oxidative devulcanization of, 13

  • Grubbs’ second-generation Ru catalyst, 66

  • guayule natural rubber (GNR), 326

  • guayule rubber (GR), 173–175, 295–297

  • hard-soft thermoset alloys (HSTAs), 147

  • HBP. See hyperbranched polymer (HBP)

  • HBPA. See hyperbranched polyamide (HBPA)

  • HDI. See hexamethylene diisocyanate (HDI)

  • HDPE. See high-density polyethylene (HDPE)

  • heterogeneous crosslinking

    • hybrid multi-networks based on dynamic covalent crosslinking, 147

      • hybrid network based on dynamic–static co-crosslinking, 151–152

      • polymer blend systems based on, 147–149

      • reversible interlocked networks based on, 149–151

    • multiphase dynamic covalent crosslinking rubber networks based on, 137

      • crosslinking-induced phase separation of dynamic covalent polymer networks, 138–140

      • heterogeneously cross-linked network constructed sequential crosslinking, 140–146

  • HEUG. See hydrogenated Eucommia ulmoides gum (HEUG)

  • Hevea brasiliensis, 160, 295

  • hexadecyl amines, 10

  • hexamethylene diisocyanate (HDI), 109

  • hexylamine (HEX), 326

  • high-density polyethylene (HDPE), 222, 241, 370

  • high-resolution transmission electron microscopy (HRTEM), 195

  • HNBR. See hydrogenated nitrile rubber (HNBR)

  • Horikx theory, 22

  • HRTEM. See high-resolution transmission electron microscopy (HRTEM)

  • HSTAs. See hard-soft thermoset alloys (HSTAs)

  • hybrid curtain fabric, 329–330

  • hybrid fillers, 322

  • hydrogenated carboxylated nitrile butadiene rubber (xHNBR), 43, 49–50, 82

  • hydrogenated ENBR (EHNBR), 366

  • hydrogenated Eucommia ulmoides gum (HEUG), 171

  • hydrogenated nitrile rubber (HNBR), 245, 363

  • hydrogenation, 363–364

  • hydrogen bonds, 95–97, 120–124

  • hydrogen peroxide (H2O2), 16

  • hyperbranched polyamide (HBPA), 83

  • hyperbranched polymer (HBP), 351

  • hysteresis damping, 345

  • imine exchange chemistry, 54–57

  • imine metathesis, 88–89

  • in-situ inter-macromolecular complexation, 128

  • interpenetrating polymer networks (IPNs), 147, 193, 353–354

  • ionic bonds, 126–129

  • ionic liquids (ILs), 8, 346

  • IPNs. See interpenetrating polymer networks (IPNs)

  • isobutylene–isoprene rubber (IIR), 246, 295

  • isoprene rubber (IR), 171

  • itaconic acid, 166

  • Kelvin–Voigt models, 39

  • ketones, 8

  • Kevlar nanofiber (KNF), 100, 101

  • latex co-precipitation, 189–190

  • LCEs. See liquid crystal elastomers (LCEs)

  • Lewis acid, 60

  • light-emitting devices, 279

  • lignin, 185, 323–324

    • dry mixing, 186–189

    • hybrid fillers, 190–191

    • latex co-precipitation, 189–190

    • structure and morphology of, 185–186

  • lignin-based polyurethane elastomer (LPUE), 167

  • linear viscoelastic regime (LVE), 344

  • lipid-soluble epigallocatechin gallate (isEGCG), 210

  • lipoic acid, 46

  • liquid crystal elastomers (LCEs), 147

  • liquid natural rubber (LNR), 242

  • lithium aluminum hydride, 8

  • LPUE. See lignin-based polyurethane elastomer (LPUE)

  • lyocell fibre, 327–328

  • magic triangle parameters, 293

  • magnesium aluminum layered double hydroxide (MgAl-LDH), 374

  • material recovery, 291

  • Maxwell models, 39

  • mechanical milling, 97

  • mechano-chemical devulcanization process, 8

  • MEG. See monoethylene glycol (MEG)

  • mercapto-benzo-thiazole (MBT), 19

  • MES. See mild extracted solvent (MES)

  • meta-chloroperbenzoic acid, 365

  • metal–ligand coordination bonds, 124–126

  • metal–ligand interactions, 97–99

  • metal-like conductivity, 262

  • methoxypolyethylene glycol (MPEG), 367

  • methyl-3-mercaptopropionate, 275

  • methyl vinyl silicone rubber (MVQ), 242

  • MgAl-LDH. See magnesium aluminum layered double hydroxide (MgAl-LDH)

  • microphase separation, 139

  • microplastics, 289

  • microwave-assisted pyrolysis method, 205

  • mild extracted solvent (MES), 304

  • MMT. See montmorillonite (MMT)

  • monoethylene glycol (MEG), 160

  • montmorillonite (MMT), 351, 374

  • Mooney viscosity, 10

  • MPEG. See methoxypolyethylene glycol (MPEG)

  • multilayer graphene (MLG), 374

  • multi-walled carbon nanotubes (MWCNTs), 80, 346, 351, 374

  • MWCNTs. See multi-walled carbon nanotubes (MWCNTs)

  • MXene, 320–321

  • N-acetylglucosamine, 193

  • N-acetylglycine (NAg), 123

  • nanocellulose, 180, 181, 197

    • fiber–filled rubber composites, 181–185

    • structure and morphology of, 180–181

  • nanofillers, 116, 350–352

  • nanoparticles (NPs), 223

  • natural elastomers, 170

    • Eucommia ulmoides gum, 170–171

    • guayule rubber, 173–175

    • natural rubber, 170

    • TKS, 171–173

  • natural fibres (NFs), 325

  • natural rubber (NR), 6, 43, 160, 170, 204, 241–242, 261, 287, 365, 367

    • sustainable alternatives of, 295

      • dandelion rubber, 297–298

      • Eucommia ulmoides gum, 298–299

      • guayule rubber, 296–297

  • NCBs. See non-covalent bonds (NCBs)

  • near-infrared (NIR) irradiation, 117

  • NIPU. See non-isocyanate polyurethane (NIPU)

  • nitrile-butadiene rubber (NBR), 245

  • nitrile rubber (NBR), 347, 360, 376

    • blends and TPVs, 367–371

    • carboxylated NBR, 366–367

    • chemical structure of, 361

    • effect of fillers and plasticizers, 371–376

    • modification of, 362

      • chlorination, 365

      • epoxidation, 365–366

      • hydrogenation, 363–364

    • oil resistance performance, 361–362

    • perspectives, 376

    • superior oil resistance of, 361

  • N-methylmorpholine-N-oxide (NMMO), 327

  • N,N-dimethyloctylamine (DMOA), 346

  • non-biodegradable waste, 289

  • non-covalent bonds (NCBs), 149

  • non-isocyanate polyurethane (NIPU), 169

  • non-polar polymers, 267

  • NR. See natural rubber (NR)

  • octadecylamine (OCT), 326

  • o-ethylhydroxylamine, 117

  • oil resistance, 238–239

  • oil-resistant rubber, 360

  • olefin metathesis reaction, 65–66

  • oligomer blending, 352–353

  • OMMT. See organo-modified montmorillonite (OMMT)

  • optimal materials, 273

  • organo-modified montmorillonite (OMMT), 374

  • oxirane ring, 366

  • PAE. See polyamide elastomer (PAE)

  • PAHs. See polycyclic aromatic hydrocarbons (PAHs)

  • palm oils (PO), 209

  • Parthenium argentatum, 296

  • Payne effect, 171, 190, 234, 319

  • PBR. See polybutadiene rubber (PBR)

  • PBT. See poly-butylene terephthalate (PBT)

  • PDA. See p-phenylenediamine (PDA)

  • PDMS. See polydimethylsiloxane (PDMS)

  • peroxides, 240

  • PET. See polyethylene terephthalate (PET)

  • phenolic formaldehyde (PF), 194

  • photoluminescence quantum yields (PL QYs), 212

  • phthalate-based plasticizers, 361

  • PLA. See polylactic acid (PLA)

  • plasticizers, 371–376

  • POE. See polyolefin elastomer (POE)

  • polar elastomers, 263–269

  • poly(2-hydroxyethyl methacrylate) (PHEMA), 101

  • poly(butadiene) (PB), 42

  • poly(dibutyl itaconate-butadiene) (PDBIB), 300

  • poly(dibutyl itaconate-co-isoprene-co-methacrylic acid) (PDIM), 300

  • poly(dimethyl-co-methyvinyl siloxanes), 264

  • poly(methyl methacrylate) (PMMA), 353

  • polyamide (PA), 239

  • polyamide 6 (PA6), 244

  • polyamide elastomer (PAE), 370, 371

  • polybutadiene rubber (PBR), 110, 295, 365

  • polybutylene succinate (PBS), 163, 244

  • poly-butylene terephthalate (PBT), 164

  • polybutylene terephthalate (PBT), 244

  • polycyclic aromatic hydrocarbons (PAHs), 206, 303

  • polydimethylsiloxane (PDMS), 43, 51, 90, 115, 117, 230, 231, 261, 267

  • polyethylene (PE), 138

  • polyethylene furanoate (PEF), 163

  • polyethylene terephthalate (PET), 163, 244

  • polyhedral oligomeric silsesquioxane (POSS), 244

  • polyisobutylene (PIB), 353

  • polyisobutylene succinic anhydride (PIBSA), 246

  • polyisoprene (PI), 42

  • polylactic acid (PLA), 163, 222, 244, 352

  • polymer, 352–353

  • polymer alloys (PAs), 147

  • polymerized ionic liquids (PILs), 346

  • polymer networks, 34

  • polyolefin elastomer (POE), 189, 241

  • polypropylene (PP), 139, 219, 240–241, 370

  • Poly-R478, 18

  • polysaccharides, 191

    • chitin, 193

    • chitosan, 193–194

    • starch, 191–193

  • polystyrene (PS), 302

  • polysulfide rubber (PSR), 47

  • polytrimethylene terephthalate (PTT), 163

  • polyurea (PUR), 61

  • polyurethane elastomers, 167

  • polyurethanes (PUs), 43, 61, 114, 115

  • polyvinyl chloride (PVC), 351, 370

  • polyvinylidene fluoride (PVDF), 229, 244, 276

  • post-polymerization modifications, 263, 264

  • PP. See polypropylene (PP)

  • p-phenylenediamine (PDA), 88, 210

  • PUs. See polyurethanes (PUs)

  • PVC. See polyvinyl chloride (PVC)

  • PVDF. See polyvinylidene fluoride (PVDF)

  • pyridinium bromide, 92

  • pyrococcus furiosus, 19

  • pyroelectric effect, 277

  • pyrolysis, 3

  • pyrolysis oil (PO), 195

  • R&D. See research and development (R&D)

  • RDB. See residual double bond (RDB)

  • Recinicum bicolor, 18

  • reclaimed GTR (RGTR), 5, 12

  • reclaimed silanized silica (r-SS), 16

  • rectorite, 374

  • recycled PET (r-PET), 327

  • regenerated PET fibre, 328

  • relaxor ferroelectric materials, 277

  • renewable resource materials (RRMs), 12

  • reprocessability, 76

  • reprocessable networks, 59

  • research and development (R&D), 297

  • residual double bond (RDB), 363

  • retro-Diels–Alder reaction (rDA reaction), 40, 115

  • reversibly interlocked polymer networks (RILNs), 149

  • RHA. See rice husk ash (RHA)

  • rice husk, 190

  • rice husk ash (RHA), 323

  • rice husk silica, 196–197

  • rolling resistance, 293

  • RPA. See rubber process analyzer (RPA)

  • RRMs. See renewable resource materials (RRMs)

  • r-SS. See reclaimed silanized silica (r-SS)

  • rubber devulcanization technologies, 5–7

  • rubber matrix, 187, 207

  • rubber/plastic (R/P) ratio, 222, 225–226

  • rubber process analyzer (RPA), 300, 344

  • rubber recycling, 3, 4

  • rubbers, 341

    • damping capacity of, 345

      • chemical modification of elastomers, 346–347

      • forming laminated structural composites, 354–355

      • incorporation of small molecules, 347–350

      • interpenetrating polymer networks, 353–354

      • nanofillers, 350–352

      • polymer and oligomer blending, 352–353

  • SAXS. See small angle X-ray scattering (SAXS)

  • SBRs. See styrene–butadiene–rubbers (SBRs)

  • SCMC. See sodium carboxymethyl cellulose (SCMC)

  • sebacic acid (SA), 79

  • self-assembly technology, 189

  • self-healing, 76

  • shear rate, 230

  • shear viscosity, 236

  • SIC. See strain-induced crystallization (SIC)

  • silica (SiO2), 81–83, 196, 207, 317–319, 371

  • silicates, 81–83

  • silicon rubber (SiR), 242–244

  • siloxane exchange reaction, 59

  • silyl ether exchange chemistry, 60

  • silyl ether exchange reactions, 60

  • single-walled carbon nanotubes (SWCNTs), 101, 374

  • Si–O exchange chemistry, 59–61

  • skeletal network (SN), 145

  • slow pyrolysis, 194

  • small angle X-ray scattering (SAXS), 58, 233

  • sodium alginate (NaAlg), 84

  • sodium carboxymethyl cellulose (SCMC), 97

  • soft matrix-induced large extensibility of hard rubber (SMILE-HR), 141

  • soft robotics, 279

  • solid-state cooling devices, 260

  • solid-state refrigeration, 276

  • solution-casting method, 193

  • solution-polymerized styrene–myrcene–butadiene rubber (S-SMBR), 300

  • solution styrene-butadiene rubber (SSBR), 12

  • soybean oil (SBO), 309

  • SSBR. See solution styrene-butadiene rubber (SSBR)

  • standard temperature and pressure (STP), 21

  • starch, 191–193, 325–326

  • starch-g-poly(butyl acrylate) (ST-g-PBA), 191

  • starch-g-poly(methyl methacrylate) (ST-g-PMMA), 191, 192

  • starch-g-poly-starch-g-polystyrene (ST-g-PS), 191

  • stearyl amines, 10

  • STP. See standard temperature and pressure (STP)

  • strain-induced crystallization (SIC), 260, 295, 364

  • stress relaxation curves, 113

  • stress–strain curves, 141

  • structure–property relationships, 265

  • styrene–butadiene–rubbers (SBRs), 10, 50, 81, 109, 142, 160, 191, 204, 287, 295, 365

  • succinic acid (SA), 309

  • sulfur polymers (SP), 165

  • sulfur radicals, 314

  • supercritical carbon dioxide (scCO2), 20, 22

  • supercritical fluids, 4

    • for chemical devulcanization, 20–23

  • sustainable carbonaceous materials, 315–317

  • sustainable rubbers, 295

  • sustainable SBR, 302–303

  • SWCNTs. See single-walled carbon nanotubes (SWCNTs)

  • synthetic SBR, 302

  • Taraxacum kok-saghyz (TKS), 170, 171–173, 297

  • TDAE. See treated distillate aromatic extract (TDAE)

  • tea oils (TO), 209

  • terpene resins (TRs), 348

  • tetrahydrofuran (THF), 302

  • thermal generators, 260

  • thermo-chemical devulcanization, 6

  • thermodynamics, 107

  • thermomechanical analysis (TMA), 39

  • thermomechanical devulcanization, 6

  • thermo-oxidative aging process, 209

  • thermo-oxidative devulcanization, 13–18, 25

  • thermophilic heterotroph, 19

  • thermoplastic elastomers (TPEs), 164, 218, 370

  • thermoplastic polyamides (TPAEs), 218

  • thermoplastic polyester elastomers (TPEEs), 164, 238, 370

  • thermoplastic polyolefins (TPOs), 218

  • thermoplastic polyurethanes (TPUs), 168, 218

  • thermoplastic vulcanizates (TPVs), 145, 218, 247, 367–371

    • bio-based TPVs, 246–247

    • formation mechanism, 221–224

    • general TPVs, 240

      • ethylene–propylene–diene monomer/polypropylene, 240–241

      • natural rubber or epoxidized natural rubber, 241–242

      • polyolefin elastomer/polypropylene, 241

    • influencing factors for microstructure morphology of, 224

      • crosslinking degree of rubber phase, 226–229

      • effects of additives, 231–232

      • effects of compatibilizers, 230–231

      • plastic phase characteristics, 225

      • processing conditions, 229–230

      • rubber phase characteristics, 224–225

      • rubber/plastic ratio, 225–226

    • performance of, 232

      • elasticity of, 234–235

      • gas barrier performance, 239

      • mechanical properties, 232–233

      • oil resistance, 238–239

      • processability of, 235–238

    • preparation methods, 220–221

    • rheological properties of, 236

    • special TPVs, 242

      • acrylic rubber, 244–245

      • ethylene-vinyl acetate rubber, 245–246

      • isobutylene–isoprene rubber, 246

      • nitrile-butadiene rubber, 245

      • silicon rubber, 242–244

    • thermoplasticity of, 219

  • thioctic acid, 46

  • thiol–ene addition, 263

  • thiol–ene click reaction, 40, 88

  • thiol-modified cellulose fiber, 182–183

  • three-dimensional crosslinking network, 219

  • three-dimensional (3D) printing, 246

  • thymol, 210

  • TKS. See Taraxacum kok-saghyz (TKS)

  • topology freezing transition temperature, 38

  • TPEEs. See thermoplastic polyester elastomers (TPEEs)

  • TPEs. See thermoplastic elastomers (TPEs)

  • TPUs. See thermoplastic polyurethanes (TPUs)

  • TPVs. See thermoplastic vulcanizates (TPVs)

  • Trametes versicolor, 18

  • trans-1,4-poly(butadiene-co-isoprene) copolymer (TBIR), 300

  • trans-1,4-polyisoprene, 298

  • transalkylation chemistry, 57–59

  • transamination, 90–92

  • transesterification, 47–52, 78

    • biobased fillers, 84–88

    • boron nitride, 83–84

    • carbonaceous fillers, 78–81

    • silica and silicates, 81–83

  • transmission electron microscopy (TEM), 233

  • trans-oxyalkylation, 92–94

  • treated distillate aromatic extract (TDAE), 206, 304

  • trialkyl phosphites, 8

  • triallyl cyanurate (TAC), 242

  • triazabicyclodecene (TBD), 47, 59

  • triazoline dione (TAD), 301

  • trifluoroethylene (TrFE), 276

  • triglycerides, 206

  • trimethylsulfonium iodide (TMSI), 58

  • triphenylphosphine (TPP), 8

  • two-dimensional carbon-based material, 81

  • ultra-high performance liquid chromatography/high-resolution mass spectrometry (UHPLC-HRMS), 173

  • unsaturated polyester elastomers (UPE), 247

  • valorization process, 5

  • van der Waals force, 348

  • vanillin 1,2-propylene glycol acetal (VPGA), 112

  • vinyl-1,2-butadiene, 361

  • vinylidene fluoride (VDF), 276

  • vinylpyridine rubber (VPR), 58, 92, 188

  • viscoelastic damping materials (VDMs), 341

  • vitrimeric rubbers, 52

  • vitrimer-like behavior, 40

  • vitrimer-like polymers, 112

  • vitrimers, 36, 38

  • volatile organic compounds (VOCs), 5, 24

  • VPGA. See vanillin 1,2-propylene glycol acetal (VPGA)

  • VPR. See vinylpyridine rubber (VPR)

  • vulcanization systems, 107

  • Wang’s equation, 225

  • waste natural rubber powders (WNRPs), 47

  • wheel of modern civilization, 287

  • Williams–Landel–Ferry (WLF) model, 37, 344

  • WNRPs. See waste natural rubber powders (WNRPs)

  • Wu’s equation, 225

  • XNBR. See carboxylated nitrile rubber (XNBR)

  • X-ray photoelectron spectroscopy, 18

  • Young’s modulus, 43, 49, 79, 119, 121, 171, 184, 344

  • ZDEDC. See zinc diethyldithiocarbamate (ZDEDC)

  • ZFAs. See zinc-free processing aids (ZFAs)

  • zinc catalyst, 87

  • zinc chloride (ZnCl2), 10, 187

  • zinc diethyldithiocarbamate (ZDEDC), 246

  • zinc-free processing aids (ZFAs), 327

  • zinc oxide (ZnO), 99, 203, 246, 309, 327

  • zinc stearate (ZnSt), 203, 204

  • ZnO. See zinc oxide (ZnO)

or Create an Account

Close Modal
Close Modal