Subject Index Free
-
Published:28 Apr 2025
-
Special Collection: 2025 eBook CollectionSeries: Polymer Chemistry Series
Innovations of Rubber Chemistry and Technology for Sustainability, ed. C. Wan and B. Guo, Royal Society of Chemistry, 2025, vol. 40, pp. 382-396.
Download citation file:
-
1,4-bis(aminomethyl)benzene, 65
-
1,4-butanediol, 162
-
1,4-hexamethylene diisocynate (HMDI), 192
-
1,5-pentanediamine, 329
-
1,6-diiodohexane, 99
-
2,2,6,6-tetramethylpiperidinyloxyl (TEMPO), 85, 183, 243
-
2,2-dithiodibenzoic acid (DTSA), 116
-
2,5-furandicarboxylic acid (FDCA), 164
-
2-aminoethanethiol, 110
-
2-hydroxyethyl methacrylate, 66
-
2-mercaptoethanol, 65
-
2-ureido-4-[1H]-pyrimidione, 97
-
3-aminopropyl triethoxysilane (APTES), 192
-
3-carboxylphenylboronic acid, 108
-
3-hydroxypropionic acid, 160
-
3-mercaptopropionic acid (MPA), 50, 99
-
3-mercaptopropyl triethoxysilane (MPTES), 192
-
3-methyl-tetrahydrofuran (3-MTHF), 161
-
3Rs, 290–291
-
3-(glycidyloxypropyl)trimethoxysilane, 81
-
4,4-diaminodiphenyl methane (DDM), 113
-
4,4-dithiodianiline (DDD), 113
-
4,4-methylene bis(phenyl isocyanate) (MDI), 192
-
4-acetaminophen (ACM), 123
-
4-aminophenol, 56
-
4-aminophenyl disulfide (APDS), 94
-
4-carboxylphenylboronic acid pinacol ester (CAPE), 89
-
4-formylbenzene boronic acid (FBA), 109
-
4-hydroxybenzaldehyde, 56
-
4-phenyl-1,2,4-triazoline-3,5-dione (TAD), 121
-
5-benzyl-3,6-dioxo-2-piperpiperazineacetic acid (DKP), 123
-
7Rs, 291
-
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO), 116
-
15-pentamethylene diisocyanate (PDI), 168
-
α-tocopherol, 210
-
β-hydroxyl ester group, 47
-
β-ketoesters, 64
-
π–π interaction, 190
-
AAE. See adipic acid ester (AAE)
-
AAP. See adipic acid polyester (AAP)
-
abrasion resistance, 293
-
ACM. See acrylic rubber (ACM)
-
acrylic elastomer, 360
-
acrylic rubber (ACM), 244–245
-
acrylonitrile–butadiene rubber (NBR), 361
-
activation energy, 78
-
adipic acid ester (AAE), 375
-
adipic acid polyester (AAP), 375
-
AFM. See atomic force microscopy (AFM)
-
aggregation-induced emission (AIE) technique, 39, 126
-
agricultural wastes, 196
-
AIE technique. See aggregation-induced emission (AIE) technique
-
alcohols, 8
-
Alder-ene reaction, 171
-
alkyl sulfonamines, 10
-
amino-functionalized polyhedral oligomeric silsesquioxane (POSS-NH2), 90
-
Amyris’s technology, 161
-
aniline trimer (ACAT), 109
-
ARISA. See automated ribosomal intergenic spacer analysis (ARISA)
-
Arrhenius equation, 39, 40, 349
-
Arrhenius law, 39
-
Arrhenius viscosity-temperature relationship, 37, 39
-
associative CANs, 36, 37
-
atomic force microscopy (AFM), 233
-
automated ribosomal intergenic spacer analysis (ARISA), 20
-
benzaldehyde, 117
-
benzo[a]pyrene (BaP), 304
-
benzo[e]pyrene (BeP), 304
-
benzo[ j]fluoranthene (BjFa), 304
-
benzo[k]fluoranthene (BkFa), 304
-
benzophenone (BP), 108
-
benzoyl peroxide (BPO), 6–7
-
BIIR. See brominated isobutylene–isoprene rubber (BIIR)
-
bio-based elastomers, 160
-
bio-based chemicals, 160
-
bio-based synthetic elastomers, 160
-
bio-itaconate elastomers, 166–167
-
butadiene rubber, 162–163
-
EPDM rubber, 163
-
isoprene rubber, 161–162
-
polyester elastomers, 163–166
-
polyurethane elastomers, 167–170
-
-
natural elastomers, 170
-
Eucommia ulmoides gum, 170–171
-
guayule rubber, 173–175
-
natural rubber, 170
-
TKS, 171–173
-
-
-
bio-based ethylene, 163
-
biobased fillers, 84–88
-
bio-based ingredients, 213
-
bio-based polyamide fibre, 329
-
biobased polyester elastomer (BPE), 163, 237
-
bio-based polyurethane elastomers, 167–170
-
bio-based synthetic elastomers, 300–301
-
bio-based thermoplastic polyester elastomers (bio-TPEEs), 164
-
bio-based TPVs, 246–247
-
biocarbon, 194
-
biochar, 194–196
-
bio-itaconate elastomers, 166–167
-
biological devulcanization, 25
-
biomass-derived fillers
-
biochar, 194–196
-
lignin, 185
-
dry mixing, 186–189
-
hybrid fillers, 190–191
-
latex co-precipitation, 189–190
-
structure and morphology of, 185–186
-
-
nanocellulose, 180
-
fiber–filled rubber composites, 181–185
-
structure and morphology of, 180–181
-
-
polysaccharides, 191
-
chitin, 193
-
chitosan, 193–194
-
starch, 191–193
-
-
rice husk silica, 196–197
-
-
biomass energy, 159
-
bio-oil, 375
-
bioremediation, 4
-
bis(phenylboronic acid carbamoyl) cystamine (BPBAC), 108
-
bismaleimides (BM), 42
-
bis(3-triethoxysilyl propyl) tetrasulfide (TESPT), 8, 192
-
blends, 367–371
-
blooming effect, 240
-
B–O exchange chemistry, 52–54
-
boronic ester exchange, 89–90
-
boronic esters, 52, 53
-
boron nitride (BN), 83–84
-
boroxine units, 53
-
BP. See benzophenone (BP)
-
BPE. See biobased polyester elastomer (BPE)
-
BPO. See benzoyl peroxide (BPO)
-
BR. See butyl rubber (BR)
-
brominated isobutylene–isoprene rubber (BIIR), 224, 239
-
Brønsted acids, 47, 60
-
butyl rubber (BR), 10
-
CANs. See covalent adaptable networks (CANs)
-
cantilever beam vibrational measurement, 344
-
capacitive sensors, 272–273
-
carbonaceous fillers, 78–81
-
carbon black (CB), 80, 179, 204, 293, 351, 371
-
carbon dots (CDs), 49, 205, 212, 327
-
carbon nanodots (CDs), 78
-
carbon nanotubes (CNTs), 116–119, 143, 240, 298
-
carboxylated nitrile–butadiene rubber (HXNBR), 351
-
carboxylated nitrile rubber (XNBR), 347, 351, 366–367, 376
-
carboxyl group-grafted SBR (CSBR), 81
-
carboxyl-modified nanocellulose, 183–184
-
carboxymethyl chitosan (CMCS), 84, 95, 194
-
catalysts, 169
-
catalytic transesterification chemistry, 49
-
CB. See carbon black (CB)
-
CD. See crosslinking degree (CD)
-
CDs. See carbon dots (CDs)
-
CE. See circular economy (CE)
-
cellulose, 180
-
cellulose nanocrystals (CNCs), 180, 181, 182, 324–325
-
cellulose nanocrystals (CNs), 84–85
-
cellulose nanofibers (CNFs), 180, 181, 324–325
-
cellulose nanowhiskers, 324
-
chemical devulcanization systems, 7–10
-
chemical treatment, 7
-
chitin, 193
-
chitin nanocrystal (CNC), 95
-
chitosan, 193–194
-
chlorinated NBR (Cl-NBR), 365
-
chlorinated polyethylene (CPE), 360
-
chlorination, 365
-
chloroprene (CR), 368
-
chrysene (CHR), 304
-
circular economy (CE), 289
-
3R concept, 290–291
-
limitations of 3R concept and updated 7R concept, 291–292
-
-
citric acid (CA), 184
-
citric acid-modified bentonite (CABt), 83
-
clay, 319–320
-
click reaction, 121
-
CMCS. See carboxymethyl chitosan (CMCS)
-
CNFs. See cellulose nanofibers (CNFs)
-
CNs. See cellulose nanocrystals (CNs)
-
C–N transalkylation, 92
-
CNTs. See carbon nanotubes (CNTs)
-
coconut oils (CO), 209
-
cold drawing, 233
-
compounding, 293
-
copper(ii)-complex catalysts, 46
-
covalent adaptable networks (CANs), 34, 109, 119
-
categories of, 35–36
-
viscoelastic properties of, 36–40
-
-
covalent bonds, 121
-
CPE. See chlorinated polyethylene (CPE)
-
cradle to cradle approaches, 34
-
crosslinking, 137
-
crosslinking degree (CD), 223, 226
-
crosslinking kinetics (CK), 226
-
cyclohexylamine (CYC), 326
-
cystamine dihydrochloride, 108
-
DA. See dopamine (DA)
-
DADS. See diallyl disulfides (DADS)
-
DAE. See distillate aromatic extract (DAE)
-
dandelion rubber (DR), 297–298
-
DCBs. See dynamic covalent bonds (DCBs)
-
DCC. See dynamic covalent chemistry (DCC)
-
DCP. See dicumyl peroxide (DCP)
-
DCRs. See dynamically crosslinked rubbers (DCRs)
-
DEAs. See dielectric elastomer actuators (DEAs)
-
deep eutectic solvent (DES), 10
-
degradation process, 115
-
degree of devulcanization, 12
-
DEGs. See dielectric elastomer generators (DEGs)
-
de-N-alkylation, 92
-
DES. See deep eutectic solvent (DES)
-
DETs. See dielectric elastomer transducers (DETs)
-
Deutsche Industrie Normen (DIN), 298
-
devulcanization, 4
-
biological method of, 20
-
by bioremediation, 18–20
-
-
devulcanization processes, 33
-
diallyl disulfides (DADS), 11
-
diarylsemipinacol (DASP), 108
-
dibenzo[a,h]anthracene (DBahA), 304
-
dibutyl phthalate (DBP), 375
-
dicumyl peroxide (DCP), 208, 227
-
dicyclohexylamine (DIC), 326
-
dielectric elastomer, 275
-
dielectric elastomer actuators (DEAs), 269–272
-
dielectric elastomer generators (DEGs), 273–276
-
dielectric elastomers, 261
-
capacitive light emitting devices, 278–279
-
in capacitive sensors, 272–273
-
dielectric elastomer actuators, 269–272
-
dielectric elastomer generators, 273–276
-
in solid-state cooling, 276–277
-
synthesis of polar elastomers, 263–269
-
for thermal energy harvesting, 277–278
-
-
dielectric elastomer transducers (DETs), 260
-
dielectric losses, 262
-
dielectric permittivity, 265, 270, 273, 280
-
Diels-Alder (D-A) reaction, 40–45, 66, 115, 140, 194
-
diene rubbers, 314
-
dimethyl ester (DMFD), 164
-
dimethyl silicone rubber (DMQ), 242
-
dioctyl adipate (DOA), 375
-
dioctyl phthalate (DOP), 375
-
dioctyl terephthalate (DOTP), 375
-
dioxaborolanes, 52
-
diphenyl disulfide (DPDS), 6, 22–23
-
diphenylguanidine (DPG), 309
-
dissociative CANs, 36
-
distillate aromatic extract (DAE), 303
-
disulfide-containing boronic ester (DEDA), 108
-
disulfide exchange, 94–95
-
disulfide exchange chemistry, 45–47
-
dithiodianiline, 46
-
dithiodibenzoic acid, 46
-
DMTA. See dynamic mechanical thermal analysis (DMTA)
-
dopamine (DA), 311
-
DOTP. See dioctyl terephthalate (DOTP)
-
DPDS. See diphenyl disulfide (DPDS)
-
DR. See dandelion rubber (DR)
-
dry ice, 21
-
dry mixing, 186–189
-
dynamically crosslinked rubbers (DCRs), 76
-
dynamic covalent bond-mediated interface in, 77
-
boronic ester exchange, 89–90
-
C–N transalkylation, 92
-
disulfide exchange, 94–95
-
imine metathesis, 88–89
-
transamination, 90–92
-
transesterification, 78–88
-
trans-oxyalkylation, 92–94
-
-
dynamic non-covalent bond-mediated interface in, 95
-
hydrogen bond, 95–97
-
metal–ligand interaction, 97–99
-
other non-covalent interactions, 99–102
-
-
-
dynamic covalent bonds (DCBs), 77, 107, 137
-
combination of two or more dynamic covalent bonds, 107
-
as chain extenders, 114–116
-
in one rubber network, 108–114
-
in rubber matrix and rubber/filler interface, 116–119
-
-
and physical bonds, 120
-
hydrogen bonds, 120–124
-
ionic bonds, 126–129
-
metal–ligand coordination bonds, 124–126
-
-
and static covalent bonds, 119–120
-
-
dynamic covalent chemistry (DCC), 34
-
concept of, 34–35
-
covalent adaptable networks, 35
-
categories of, 35–36
-
viscoelastic properties of, 36–40
-
-
in rubber networks, 40
-
B–O exchange chemistry, 52–54
-
Diels–Alder chemistry, 40–45
-
disulfide exchange chemistry, 45–47
-
dynamic isocyanate chemistry, 61–64
-
imine exchange chemistry, 54–57
-
other dynamic covalent chemistries, 65–66
-
Si–O exchange chemistry, 59–61
-
transalkylation chemistry, 57–59
-
transamination chemistry of vinylogous urethane, 64–65
-
transesterification, 47–52
-
-
-
dynamic crosslinked networks, 129
-
dynamic crosslinkers, 76
-
dynamic imine bonds, 116
-
dynamic isocyanate chemistry, 61–64
-
dynamic mechanical analysis (DMA), 300
-
dynamic mechanical thermal analysis (DMTA), 308, 343, 344
-
dynamic vulcanization process, 221
-
EACO. See epoxy acetylated castor oil (EACO)
-
EBCO. See epoxy benzoyl castor oil (EBCO)
-
EDS. See energy dispersive spectroscopy (EDS)
-
eggshell, 326
-
elasticity, 234–235
-
elastocaloric effect, 276
-
elastomers, 259
-
electrocaloric refrigeration, 276
-
electromechanical instability (EMI), 270, 271
-
electronic skin, 279
-
electron-induced reactive processing, 221
-
electron induced reactive processing (EIReP), 240
-
EMI. See electromechanical instability (EMI)
-
energy consumption, 4
-
energy dispersive spectroscopy (EDS), 205
-
energy recovery, 291
-
ENR. See epoxidized natural rubber (ENR)
-
entropy-driven elasticity, 260
-
EPDM. See ethylene propylene diene monomer (EPDM); ethylene-propylene-diene monomer (EPDM)
-
EPM. See ethylene–propylene rubber (EPM)
-
EPO. See epoxidized palm oil (EPO)
-
epoxidation, 365–366
-
epoxidized boron nitride (EBN), 83
-
epoxidized butadiene rubber (EBR), 311
-
epoxidized natural rubber (ENR), 43, 49, 78, 108, 142, 170, 182, 225, 241–242, 295, 301–303, 365
-
epoxidized palm oil (EPO), 308
-
epoxidized polyisoprene (EPI), 80
-
epoxy acetylated castor oil (EACO), 376
-
epoxy benzoyl castor oil (EBCO), 376
-
Escherichia coli, 161
-
esterification-modified nanocellulose, 184–185
-
ester-type thermoplastic polyurethane (TPU-EX), 352
-
ether-type thermoplastic polyurethane (TPU-ER), 352
-
ethylenemethyl acrylate-glycidyl methacrylate terpolymer (EMA-co-GMA), 243
-
ethylene propylene diene monomer (EPDM), 163, 219
-
ethylene–propylene–diene monomer (EPDM), 204, 240–241, 295, 299
-
ethylene/propylene rubber (EPR), 42
-
ethylene–propylene rubber (EPM), 108, 140
-
ethylene-vinyl acetate (EVA), 42, 244
-
ethylene-vinyl acetate rubber (EVM), 245–246
-
Eucommia ulmoides gum (EUG), 170, 295, 298–299
-
EVA. See ethylene-vinyl acetate (EVA)
-
FA. See furfuryl amine (FA)
-
fibre reinforced polymers (FRPs), 354
-
filler–filler interactions, 355
-
fillers, 179, 314, 371–376
-
bioresourced fillers, 322
-
cellulose nanocrystals and cellulose nanofibres, 324–325
-
eggshell, 326
-
green silica, 323
-
lignin, 323–324
-
starch, 325–326
-
-
clay, 319–320
-
graphitic materials, 320
-
hybrid fillers, 322
-
MXene, 320–321
-
silica, 317–319
-
sustainable carbonaceous materials, 315–317
-
-
Flori–Stockmeyer gel theory, 151
-
fluorocarbon elastomer (FKM), 360
-
frequency-temperature equivalence, 344
-
FRPs. See fibre reinforced polymers (FRPs)
-
fuel economy, 330
-
furan-maleimide reactions, 42, 43
-
furfuryl amine (FA), 376
-
Gibbs free energy, 347
-
GNR. See guayule natural rubber (GNR)
-
GO. See graphene oxide (GO)
-
GR. See guayule rubber (GR)
-
Gram-negative bacteria, 20
-
graphene, 81, 116
-
graphene nanoplate (GnP), 81
-
graphene oxide (GO), 83, 191, 351, 374
-
graphite, 322
-
graphitic materials, 320
-
green chemical devulcanization systems, 4
-
chemical devulcanization systems, 7–10
-
devulcanization by bioremediation, 18–20
-
pros and cons of commonly used devulcanizing agents, 23–24
-
rubber devulcanization technologies, 5–7
-
supercritical fluid medium for chemical devulcanization, 20–23
-
thermo-oxidative devulcanization, 13–18
-
-
green functional ingredients
-
activators for rubber vulcanization, 203–206
-
antioxidants for rubber protection, 209–213
-
processing oil for rubber compounding, 206–209
-
-
greenhouse gas (GHG) emissions, 288–289
-
green silica, 323
-
green tyres, 287
-
challenges and perspectives, 332–333
-
circular economy, 289
-
3R concept, 290–291
-
limitations of 3R concept and updated 7R concept, 291–292
-
-
economic assessment of green tyre production, 330
-
cost effectiveness by replacing commercial silica with waste‑based silica, 330–331
-
fuel economy, 330
-
production cost, 330
-
-
environmental impact of, 288
-
emission of greenhouse gas, 288–289
-
microplastics, 289
-
-
global tyre consumption and market, 287–288
-
significance of, 292–293
-
sustainable ingredients for compounding green tyres, 293
-
fillers, 314–326
-
reversible crosslinking strategy, 309–314
-
sustainable alternatives of accelerators and activators, 326–327
-
sustainable alternatives of traditional tyre cords, 327–330
-
sustainable rubbers for, 295–309
-
-
-
ground tire rubber (GTR), 5
-
green chemical devulcanization of, 11
-
microwave devulcanization of, 12
-
thermo-oxidative devulcanization of, 13
-
-
Grubbs’ second-generation Ru catalyst, 66
-
guayule natural rubber (GNR), 326
-
guayule rubber (GR), 173–175, 295–297
-
hard-soft thermoset alloys (HSTAs), 147
-
HBP. See hyperbranched polymer (HBP)
-
HBPA. See hyperbranched polyamide (HBPA)
-
HDI. See hexamethylene diisocyanate (HDI)
-
HDPE. See high-density polyethylene (HDPE)
-
heterogeneous crosslinking
-
hybrid multi-networks based on dynamic covalent crosslinking, 147
-
hybrid network based on dynamic–static co-crosslinking, 151–152
-
polymer blend systems based on, 147–149
-
reversible interlocked networks based on, 149–151
-
-
multiphase dynamic covalent crosslinking rubber networks based on, 137
-
crosslinking-induced phase separation of dynamic covalent polymer networks, 138–140
-
heterogeneously cross-linked network constructed sequential crosslinking, 140–146
-
-
-
HEUG. See hydrogenated Eucommia ulmoides gum (HEUG)
-
Hevea brasiliensis, 160, 295
-
hexadecyl amines, 10
-
hexamethylene diisocyanate (HDI), 109
-
hexylamine (HEX), 326
-
high-density polyethylene (HDPE), 222, 241, 370
-
high-resolution transmission electron microscopy (HRTEM), 195
-
HNBR. See hydrogenated nitrile rubber (HNBR)
-
Horikx theory, 22
-
HRTEM. See high-resolution transmission electron microscopy (HRTEM)
-
HSTAs. See hard-soft thermoset alloys (HSTAs)
-
hybrid curtain fabric, 329–330
-
hybrid fillers, 322
-
hydrogenated carboxylated nitrile butadiene rubber (xHNBR), 43, 49–50, 82
-
hydrogenated ENBR (EHNBR), 366
-
hydrogenated Eucommia ulmoides gum (HEUG), 171
-
hydrogenated nitrile rubber (HNBR), 245, 363
-
hydrogenation, 363–364
-
hydrogen bonds, 95–97, 120–124
-
hydrogen peroxide (H2O2), 16
-
hyperbranched polyamide (HBPA), 83
-
hyperbranched polymer (HBP), 351
-
hysteresis damping, 345
-
imine exchange chemistry, 54–57
-
imine metathesis, 88–89
-
in-situ inter-macromolecular complexation, 128
-
interpenetrating polymer networks (IPNs), 147, 193, 353–354
-
ionic bonds, 126–129
-
ionic liquids (ILs), 8, 346
-
IPNs. See interpenetrating polymer networks (IPNs)
-
isobutylene–isoprene rubber (IIR), 246, 295
-
isoprene rubber (IR), 171
-
itaconic acid, 166
-
Kelvin–Voigt models, 39
-
ketones, 8
-
Kevlar nanofiber (KNF), 100, 101
-
latex co-precipitation, 189–190
-
LCEs. See liquid crystal elastomers (LCEs)
-
Lewis acid, 60
-
light-emitting devices, 279
-
lignin, 185, 323–324
-
dry mixing, 186–189
-
hybrid fillers, 190–191
-
latex co-precipitation, 189–190
-
structure and morphology of, 185–186
-
-
lignin-based polyurethane elastomer (LPUE), 167
-
linear viscoelastic regime (LVE), 344
-
lipid-soluble epigallocatechin gallate (isEGCG), 210
-
lipoic acid, 46
-
liquid crystal elastomers (LCEs), 147
-
liquid natural rubber (LNR), 242
-
lithium aluminum hydride, 8
-
LPUE. See lignin-based polyurethane elastomer (LPUE)
-
lyocell fibre, 327–328
-
magic triangle parameters, 293
-
magnesium aluminum layered double hydroxide (MgAl-LDH), 374
-
material recovery, 291
-
Maxwell models, 39
-
mechanical milling, 97
-
mechano-chemical devulcanization process, 8
-
MEG. See monoethylene glycol (MEG)
-
mercapto-benzo-thiazole (MBT), 19
-
MES. See mild extracted solvent (MES)
-
meta-chloroperbenzoic acid, 365
-
metal–ligand coordination bonds, 124–126
-
metal–ligand interactions, 97–99
-
metal-like conductivity, 262
-
methoxypolyethylene glycol (MPEG), 367
-
methyl-3-mercaptopropionate, 275
-
methyl vinyl silicone rubber (MVQ), 242
-
MgAl-LDH. See magnesium aluminum layered double hydroxide (MgAl-LDH)
-
microphase separation, 139
-
microplastics, 289
-
microwave-assisted pyrolysis method, 205
-
mild extracted solvent (MES), 304
-
MMT. See montmorillonite (MMT)
-
monoethylene glycol (MEG), 160
-
montmorillonite (MMT), 351, 374
-
Mooney viscosity, 10
-
MPEG. See methoxypolyethylene glycol (MPEG)
-
multilayer graphene (MLG), 374
-
multi-walled carbon nanotubes (MWCNTs), 80, 346, 351, 374
-
MWCNTs. See multi-walled carbon nanotubes (MWCNTs)
-
MXene, 320–321
-
N-acetylglucosamine, 193
-
N-acetylglycine (NAg), 123
-
nanocellulose, 180, 181, 197
-
fiber–filled rubber composites, 181–185
-
structure and morphology of, 180–181
-
-
nanofillers, 116, 350–352
-
nanoparticles (NPs), 223
-
natural elastomers, 170
-
Eucommia ulmoides gum, 170–171
-
guayule rubber, 173–175
-
natural rubber, 170
-
TKS, 171–173
-
-
natural fibres (NFs), 325
-
natural rubber (NR), 6, 43, 160, 170, 204, 241–242, 261, 287, 365, 367
-
sustainable alternatives of, 295
-
dandelion rubber, 297–298
-
Eucommia ulmoides gum, 298–299
-
guayule rubber, 296–297
-
-
-
NCBs. See non-covalent bonds (NCBs)
-
near-infrared (NIR) irradiation, 117
-
NIPU. See non-isocyanate polyurethane (NIPU)
-
nitrile-butadiene rubber (NBR), 245
-
nitrile rubber (NBR), 347, 360, 376
-
blends and TPVs, 367–371
-
carboxylated NBR, 366–367
-
chemical structure of, 361
-
effect of fillers and plasticizers, 371–376
-
modification of, 362
-
chlorination, 365
-
epoxidation, 365–366
-
hydrogenation, 363–364
-
-
oil resistance performance, 361–362
-
perspectives, 376
-
superior oil resistance of, 361
-
-
N-methylmorpholine-N-oxide (NMMO), 327
-
N,N-dimethyloctylamine (DMOA), 346
-
non-biodegradable waste, 289
-
non-covalent bonds (NCBs), 149
-
non-isocyanate polyurethane (NIPU), 169
-
non-polar polymers, 267
-
NR. See natural rubber (NR)
-
octadecylamine (OCT), 326
-
o-ethylhydroxylamine, 117
-
oil resistance, 238–239
-
oil-resistant rubber, 360
-
olefin metathesis reaction, 65–66
-
oligomer blending, 352–353
-
OMMT. See organo-modified montmorillonite (OMMT)
-
optimal materials, 273
-
organo-modified montmorillonite (OMMT), 374
-
oxirane ring, 366
-
PAE. See polyamide elastomer (PAE)
-
PAHs. See polycyclic aromatic hydrocarbons (PAHs)
-
palm oils (PO), 209
-
Parthenium argentatum, 296
-
Payne effect, 171, 190, 234, 319
-
PBR. See polybutadiene rubber (PBR)
-
PBT. See poly-butylene terephthalate (PBT)
-
PDA. See p-phenylenediamine (PDA)
-
PDMS. See polydimethylsiloxane (PDMS)
-
peroxides, 240
-
PET. See polyethylene terephthalate (PET)
-
phenolic formaldehyde (PF), 194
-
photoluminescence quantum yields (PL QYs), 212
-
phthalate-based plasticizers, 361
-
PLA. See polylactic acid (PLA)
-
plasticizers, 371–376
-
POE. See polyolefin elastomer (POE)
-
polar elastomers, 263–269
-
poly(2-hydroxyethyl methacrylate) (PHEMA), 101
-
poly(butadiene) (PB), 42
-
poly(dibutyl itaconate-butadiene) (PDBIB), 300
-
poly(dibutyl itaconate-co-isoprene-co-methacrylic acid) (PDIM), 300
-
poly(dimethyl-co-methyvinyl siloxanes), 264
-
poly(methyl methacrylate) (PMMA), 353
-
polyamide (PA), 239
-
polyamide 6 (PA6), 244
-
polyamide elastomer (PAE), 370, 371
-
polybutadiene rubber (PBR), 110, 295, 365
-
polybutylene succinate (PBS), 163, 244
-
poly-butylene terephthalate (PBT), 164
-
polybutylene terephthalate (PBT), 244
-
polycyclic aromatic hydrocarbons (PAHs), 206, 303
-
polydimethylsiloxane (PDMS), 43, 51, 90, 115, 117, 230, 231, 261, 267
-
polyethylene (PE), 138
-
polyethylene furanoate (PEF), 163
-
polyethylene terephthalate (PET), 163, 244
-
polyhedral oligomeric silsesquioxane (POSS), 244
-
polyisobutylene (PIB), 353
-
polyisobutylene succinic anhydride (PIBSA), 246
-
polyisoprene (PI), 42
-
polylactic acid (PLA), 163, 222, 244, 352
-
polymer, 352–353
-
polymer alloys (PAs), 147
-
polymerized ionic liquids (PILs), 346
-
polymer networks, 34
-
polyolefin elastomer (POE), 189, 241
-
polypropylene (PP), 139, 219, 240–241, 370
-
Poly-R478, 18
-
polysaccharides, 191
-
chitin, 193
-
chitosan, 193–194
-
starch, 191–193
-
-
polystyrene (PS), 302
-
polysulfide rubber (PSR), 47
-
polytrimethylene terephthalate (PTT), 163
-
polyurea (PUR), 61
-
polyurethane elastomers, 167
-
polyurethanes (PUs), 43, 61, 114, 115
-
polyvinyl chloride (PVC), 351, 370
-
polyvinylidene fluoride (PVDF), 229, 244, 276
-
post-polymerization modifications, 263, 264
-
PP. See polypropylene (PP)
-
p-phenylenediamine (PDA), 88, 210
-
PUs. See polyurethanes (PUs)
-
PVC. See polyvinyl chloride (PVC)
-
PVDF. See polyvinylidene fluoride (PVDF)
-
pyridinium bromide, 92
-
pyrococcus furiosus, 19
-
pyroelectric effect, 277
-
pyrolysis, 3
-
pyrolysis oil (PO), 195
-
R&D. See research and development (R&D)
-
RDB. See residual double bond (RDB)
-
Recinicum bicolor, 18
-
reclaimed GTR (RGTR), 5, 12
-
reclaimed silanized silica (r-SS), 16
-
rectorite, 374
-
recycled PET (r-PET), 327
-
regenerated PET fibre, 328
-
relaxor ferroelectric materials, 277
-
renewable resource materials (RRMs), 12
-
reprocessability, 76
-
reprocessable networks, 59
-
research and development (R&D), 297
-
residual double bond (RDB), 363
-
retro-Diels–Alder reaction (rDA reaction), 40, 115
-
reversibly interlocked polymer networks (RILNs), 149
-
RHA. See rice husk ash (RHA)
-
rice husk, 190
-
rice husk ash (RHA), 323
-
rice husk silica, 196–197
-
rolling resistance, 293
-
RPA. See rubber process analyzer (RPA)
-
RRMs. See renewable resource materials (RRMs)
-
r-SS. See reclaimed silanized silica (r-SS)
-
rubber devulcanization technologies, 5–7
-
rubber matrix, 187, 207
-
rubber/plastic (R/P) ratio, 222, 225–226
-
rubber process analyzer (RPA), 300, 344
-
rubber recycling, 3, 4
-
rubbers, 341
-
damping capacity of, 345
-
chemical modification of elastomers, 346–347
-
forming laminated structural composites, 354–355
-
incorporation of small molecules, 347–350
-
interpenetrating polymer networks, 353–354
-
nanofillers, 350–352
-
polymer and oligomer blending, 352–353
-
-
-
SAXS. See small angle X-ray scattering (SAXS)
-
SBRs. See styrene–butadiene–rubbers (SBRs)
-
SCMC. See sodium carboxymethyl cellulose (SCMC)
-
sebacic acid (SA), 79
-
self-assembly technology, 189
-
self-healing, 76
-
shear rate, 230
-
shear viscosity, 236
-
SIC. See strain-induced crystallization (SIC)
-
silica (SiO2), 81–83, 196, 207, 317–319, 371
-
silicates, 81–83
-
silicon rubber (SiR), 242–244
-
siloxane exchange reaction, 59
-
silyl ether exchange chemistry, 60
-
silyl ether exchange reactions, 60
-
single-walled carbon nanotubes (SWCNTs), 101, 374
-
Si–O exchange chemistry, 59–61
-
skeletal network (SN), 145
-
slow pyrolysis, 194
-
small angle X-ray scattering (SAXS), 58, 233
-
sodium alginate (NaAlg), 84
-
sodium carboxymethyl cellulose (SCMC), 97
-
soft matrix-induced large extensibility of hard rubber (SMILE-HR), 141
-
soft robotics, 279
-
solid-state cooling devices, 260
-
solid-state refrigeration, 276
-
solution-casting method, 193
-
solution-polymerized styrene–myrcene–butadiene rubber (S-SMBR), 300
-
solution styrene-butadiene rubber (SSBR), 12
-
soybean oil (SBO), 309
-
SSBR. See solution styrene-butadiene rubber (SSBR)
-
standard temperature and pressure (STP), 21
-
starch, 191–193, 325–326
-
starch-g-poly(butyl acrylate) (ST-g-PBA), 191
-
starch-g-poly(methyl methacrylate) (ST-g-PMMA), 191, 192
-
starch-g-poly-starch-g-polystyrene (ST-g-PS), 191
-
stearyl amines, 10
-
STP. See standard temperature and pressure (STP)
-
strain-induced crystallization (SIC), 260, 295, 364
-
stress relaxation curves, 113
-
stress–strain curves, 141
-
structure–property relationships, 265
-
styrene–butadiene–rubbers (SBRs), 10, 50, 81, 109, 142, 160, 191, 204, 287, 295, 365
-
succinic acid (SA), 309
-
sulfur polymers (SP), 165
-
sulfur radicals, 314
-
supercritical carbon dioxide (scCO2), 20, 22
-
supercritical fluids, 4
-
for chemical devulcanization, 20–23
-
-
sustainable carbonaceous materials, 315–317
-
sustainable rubbers, 295
-
sustainable SBR, 302–303
-
SWCNTs. See single-walled carbon nanotubes (SWCNTs)
-
synthetic SBR, 302
-
Taraxacum kok-saghyz (TKS), 170, 171–173, 297
-
TDAE. See treated distillate aromatic extract (TDAE)
-
tea oils (TO), 209
-
terpene resins (TRs), 348
-
tetrahydrofuran (THF), 302
-
thermal generators, 260
-
thermo-chemical devulcanization, 6
-
thermodynamics, 107
-
thermomechanical analysis (TMA), 39
-
thermomechanical devulcanization, 6
-
thermo-oxidative aging process, 209
-
thermo-oxidative devulcanization, 13–18, 25
-
thermophilic heterotroph, 19
-
thermoplastic elastomers (TPEs), 164, 218, 370
-
thermoplastic polyamides (TPAEs), 218
-
thermoplastic polyester elastomers (TPEEs), 164, 238, 370
-
thermoplastic polyolefins (TPOs), 218
-
thermoplastic polyurethanes (TPUs), 168, 218
-
thermoplastic vulcanizates (TPVs), 145, 218, 247, 367–371
-
bio-based TPVs, 246–247
-
formation mechanism, 221–224
-
general TPVs, 240
-
ethylene–propylene–diene monomer/polypropylene, 240–241
-
natural rubber or epoxidized natural rubber, 241–242
-
polyolefin elastomer/polypropylene, 241
-
-
influencing factors for microstructure morphology of, 224
-
crosslinking degree of rubber phase, 226–229
-
effects of additives, 231–232
-
effects of compatibilizers, 230–231
-
plastic phase characteristics, 225
-
processing conditions, 229–230
-
rubber phase characteristics, 224–225
-
rubber/plastic ratio, 225–226
-
-
performance of, 232
-
elasticity of, 234–235
-
gas barrier performance, 239
-
mechanical properties, 232–233
-
oil resistance, 238–239
-
processability of, 235–238
-
-
preparation methods, 220–221
-
rheological properties of, 236
-
special TPVs, 242
-
acrylic rubber, 244–245
-
ethylene-vinyl acetate rubber, 245–246
-
isobutylene–isoprene rubber, 246
-
nitrile-butadiene rubber, 245
-
silicon rubber, 242–244
-
-
thermoplasticity of, 219
-
-
thioctic acid, 46
-
thiol–ene addition, 263
-
thiol–ene click reaction, 40, 88
-
thiol-modified cellulose fiber, 182–183
-
three-dimensional crosslinking network, 219
-
three-dimensional (3D) printing, 246
-
thymol, 210
-
TKS. See Taraxacum kok-saghyz (TKS)
-
topology freezing transition temperature, 38
-
TPEEs. See thermoplastic polyester elastomers (TPEEs)
-
TPEs. See thermoplastic elastomers (TPEs)
-
TPUs. See thermoplastic polyurethanes (TPUs)
-
TPVs. See thermoplastic vulcanizates (TPVs)
-
Trametes versicolor, 18
-
trans-1,4-poly(butadiene-co-isoprene) copolymer (TBIR), 300
-
trans-1,4-polyisoprene, 298
-
transalkylation chemistry, 57–59
-
transamination, 90–92
-
transesterification, 47–52, 78
-
biobased fillers, 84–88
-
boron nitride, 83–84
-
carbonaceous fillers, 78–81
-
silica and silicates, 81–83
-
-
transmission electron microscopy (TEM), 233
-
trans-oxyalkylation, 92–94
-
treated distillate aromatic extract (TDAE), 206, 304
-
trialkyl phosphites, 8
-
triallyl cyanurate (TAC), 242
-
triazabicyclodecene (TBD), 47, 59
-
triazoline dione (TAD), 301
-
trifluoroethylene (TrFE), 276
-
triglycerides, 206
-
trimethylsulfonium iodide (TMSI), 58
-
triphenylphosphine (TPP), 8
-
two-dimensional carbon-based material, 81
-
ultra-high performance liquid chromatography/high-resolution mass spectrometry (UHPLC-HRMS), 173
-
unsaturated polyester elastomers (UPE), 247
-
valorization process, 5
-
van der Waals force, 348
-
vanillin 1,2-propylene glycol acetal (VPGA), 112
-
vinyl-1,2-butadiene, 361
-
vinylidene fluoride (VDF), 276
-
vinylpyridine rubber (VPR), 58, 92, 188
-
viscoelastic damping materials (VDMs), 341
-
vitrimeric rubbers, 52
-
vitrimer-like behavior, 40
-
vitrimer-like polymers, 112
-
vitrimers, 36, 38
-
volatile organic compounds (VOCs), 5, 24
-
VPGA. See vanillin 1,2-propylene glycol acetal (VPGA)
-
VPR. See vinylpyridine rubber (VPR)
-
vulcanization systems, 107
-
Wang’s equation, 225
-
waste natural rubber powders (WNRPs), 47
-
wheel of modern civilization, 287
-
Williams–Landel–Ferry (WLF) model, 37, 344
-
WNRPs. See waste natural rubber powders (WNRPs)
-
Wu’s equation, 225
-
XNBR. See carboxylated nitrile rubber (XNBR)
-
X-ray photoelectron spectroscopy, 18
-
Young’s modulus, 43, 49, 79, 119, 121, 171, 184, 344
-
ZDEDC. See zinc diethyldithiocarbamate (ZDEDC)
-
ZFAs. See zinc-free processing aids (ZFAs)
-
zinc catalyst, 87
-
zinc chloride (ZnCl2), 10, 187
-
zinc diethyldithiocarbamate (ZDEDC), 246
-
zinc-free processing aids (ZFAs), 327
-
zinc oxide (ZnO), 99, 203, 246, 309, 327
-
zinc stearate (ZnSt), 203, 204
-
ZnO. See zinc oxide (ZnO)