Skip to Main Content
Skip Nav Destination
  • 3D food printers

    • binder jetting, 257

    • concepts of, 274–275

    • extrusion-based printing, 256

    • future aspects, 260–263

    • inkjet printing, 256–257

    • positive and negative properties, 256

    • selective laser sintering (SLS) technology, 257–258

  • 3-mercaptopropyl trimethoxysilane (MPTS), 230

  • 60Co radioactive isotope, 309

  • 137Cs radioactive isotope, 309

  • adaptive neurofuzzy inference systems (ANFIS), 2

  • adulterants detection, 227–228

  • affinity-based nanosensors, 216–217

  • aflatoxin B1 antibody (AFB1), 234

  • aflatoxins, 234

  • AFM. See atomic force microscopy (AFM)

  • AI. See artificial intelligence (AI)

  • amperometric biosensors, 223

  • ANFIS. See adaptive neurofuzzy inference systems (ANFIS)

  • ANNs. See artificial neural networks (ANNs)

  • antibiotics detection, 235–236

  • AR. See augmented reality (AR)

  • artificial intelligence (AI), 238–239

    • assisted 3D food printing technology

      • areas and applications, 271–272

      • challenges and future prospects, 278–279

      • education, 272

      • expert systems, 272–273

      • history of AI, 270–271

      • neural networks, 273

      • overview, 268–270

      • post-processing step, 277–278

      • pre-processing step, 275–276

      • processing step, 276–277

      • robotics, 273–274

    • attractive performance, 2

    • food processing and packaging, 2–3

    • impact sustainability and food security, 15–16

    • implementation

      • identification of non-halal components, 27–28

      • quantification of trans fatty acid, 30

      • rheological analysis for characterization, 26–27

      • shelf-life prediction, 30–32

      • thermal oxidation prediction, 29–30

      • waste cooking oil, 28–29

    • ingredient usage, 10

    • modeling applications

      • fruit and vegetable technology, 262

      • fuzzy logic, 259–260

      • genetic algorithms, 260

      • neural networks, 258–259

      • unwanted surface browning, 262

    • optimizing recipes, 10

    • overview, 23–24

    • smart packaging solutions, 11–12

  • artificial neural networks (ANNs)

    • application of, 148–172

    • auto-encoders, 146–147

    • baking, 161–166

    • vs. biological network, 137

    • convolutional neural networks (CNNs), 142–143

    • development of, 137–139

    • extrusion, 166–167

    • fermentation, 167–168

    • filtration, 168–169

    • freeze-drying, 154

    • future scope and use of, 172

    • Hopfield network, 144–145

    • Kohonen’s network, 143–144

    • LSTM, 145–146

    • microwave assisted extraction (MAE), 158–160

    • microwave drying, 152

    • microwave vacuum drying, 153–154

    • multi-layer feed-forward networks, 140–141

    • network learning, 137

    • node character, 135

    • optimisation methods, 147–148

    • osmotic dehydration, 154–155

    • RBM and DBM, 145

    • recurrent neural network (RNN), 141–142

    • shelf-life estimation, 170–172

    • single layer feed-forward networks, 140

    • soaking and canning, 169–170

    • solvent extraction (SE), 158

    • super critical fluid extraction (SCFE), 160–161

    • tray drying, 149, 152

    • ultra-sound assisted extraction (UAE), 160

    • vacuum drying, 153

  • Asynchronous Byzantine Fault Tolerant (aBFT), 90

  • atomic force microscopy (AFM), 221

  • atrazine, 226

  • augmented reality (AR), 254

  • auto-encoders, 146–147

  • automation in food production, 3–4

    • cutting automation, 7

    • peeling automation, 6

    • quality control and safety, 7

    • sorting automation, 6

  • backpropagation (BP) neural network, 42–43

  • baking, 161–166

  • big data, 253

    • benefits and challenges, 78–79

    • blockchain, 77–78

    • data analytics, 75

    • definition of, 72

    • digital and sensing technologies, 72–75

    • final considerations, 79–80

    • food safety and security, 76

    • sensing technologies, 76–77

  • bio-nanosensors, 222–223

  • blockchain, 254

  • brevetoxins (BTXs), 233–234

  • calorimetric biosensors, 223

  • campylobacter, 309

  • CANN. See compute architecture for neural networks (CANN)

  • canning, 169–170

  • cantilever nanosensor, 222

  • capacitive sensors, 295

  • catalytic-based nanosensors, 217

  • chemical nanosensors, 221–222

  • chemometrics, digital images assisted by

    • digital images acquisition, 185–187

    • ora-pro-nobis leaves, 184–185

  • chlorophyll, 187

  • cholera toxin (CT), 235

  • C–H stretching overtone, 32

  • CNNs. See convolutional neural networks (CNNs)

  • cold chain logistics (CCL), 95

  • compute architecture for neural networks (CANN), 277

  • COMSOL Multiphysics, 201

  • convolutional neural networks (CNNs), 142–143

  • CT. See cholera toxin (CT)

  • cyber physical systems, 254

  • deep Boltzmann machines (DBM), 140, 145, 173

  • deployable nanosensors, 222

  • Deskjet scanner, 185

  • digitalization, food industry

    • augmented reality (AR), 254–255

    • big data, 253

    • blockchain, 254

    • cyber physical systems, 254

    • digital industry, 253

    • food design phenomenon, 255

    • Internet of Things (IoT), 253

    • smart robots, 255

  • dynamic headspace-needle trap extraction method, 291–292

  • dynamic headspace sampling with sorbent tubes, 290–291

  • edge computing, 91

  • eicosapentaenoic acid (EPA), 36

  • electrical current measurements, 219–220

  • electrochemical nanosensors, 221

  • electrochemical sensors, 295

  • electromagnetic nanosensors, 218–220

  • electrometers, 222

  • electronic nose (e-nose), 74, 283

    • basal cells, 284

    • challenges, 305–306

    • detection system

      • applications of, 303, 304

      • data analysis system, 296

      • history of, 294–295

      • measurement principles, 295–296

    • future trends, 306

    • odor molecules, 285

    • odor (scent) receptors, 285–286

    • olfactory receptors, 283–284

    • sample handling system

      • dynamic headspace-needle trap extraction method, 291–292

      • dynamic headspace sampling with sorbent tubes, 290–291

      • membrane-inlet mass spectrometry (MIMS), 292–293

      • solid phase microextraction (SPME) method, 288–290

      • static headspace (SHS) method, 287–288

      • trapping and purging method, 288

    • schematic illustration, 287

    • sensory receptors, 283

  • electronic tongue (e-tongue), 74, 296–297

    • applications of, 303–305

    • bitterness, 298

    • challenges, 305–306

    • circuit level, 299

    • future trends, 306

    • perception level, 299

    • receptor level, 299

    • saltiness, 298

    • sourness, 298

    • statistical data analysis

      • chemometric techniques, 302

      • data interpretation and validation, 302–303

      • frequency-domain features, 301–302

      • pattern recognition, 302

      • signal acquisition, 299–300

      • signal preprocessing, 300–301

      • software and tools, 303

      • statistical and mathematical features, 302

      • time-domain features, 301

      • workflow, 303

    • sweetness, 298

    • taste buds, 297

    • umami, 298

  • ELM. See extreme learning machine (ELM)

  • e-nose. See electronic nose (e-nose)

  • EPA. See eicosapentaenoic acid (EPA)

  • Escherichia Coli, 230–231

  • e-tongue. See electronic tongue (e-tongue)

  • extreme learning machine (ELM), 43–44

  • extrusion, 166–167

  • fats and oils production, 25–26

  • FDM. See fused deposition modeling (FDM)

  • fermentation, 167–168

  • fertilizer and pesticide analytes, 224–227

  • FET. See field effect transistor (FET)

  • fiber optic nanosensors, 218

  • field effect transistor (FET), 296

  • filtration, 168–169

  • fish and fisheries products

    • AI systems for quality measurement, 48–49

    • applications of AI

      • automated sorting and grading, 56

      • predictive analytics for quality assurance, 56

      • quality inspection and defect detection, 57

    • automated visual inspection systems

      • computer vision systems, 38–39

      • real-time quality grading, 39

    • challenges and limitations, 57

    • challenges and prospects, 58–59

    • eicosapentaenoic acid (EPA), 36

    • food shelf-life prediction

      • backpropagation (BP) neural network, 42–43

      • extreme learning machine (ELM), 43–44

      • genetic algorithm–BP, 43

      • machine learning (ML), 41

      • radial basis function (RBF) neural network, 44–45

      • shelf-life prediction, 45

    • future directions and opportunities, 57–58

    • hyperspectral and multispectral imaging, 39–41

    • machine learning for defect detection, 51–54

    • machine olfaction, 46–47, 50–51

    • overview, 36–37

    • role of AI, 58

    • seafood processing industry, 37

    • traceability and compliance

      • automated packaging and labeling, 56

      • data integration and analysis, 56

      • fish processing and circular economy, 55–56

      • quality control robotics and automation, 56

      • seafood product integrity, 55

  • food adulteration, 71

  • food irradiation

    • applications of, 316–317

    • disinfection technology, 311

    • dose measurement, 313–315

    • doses of ionizing radiation, 312

    • EPR dosimeter, 314

    • in European Union, 314–316

    • facilities and control, 313

    • foodstuffs, 315

    • health aspects, 317–318

    • irradiation sources, 312

    • operational parameters, 320–321

    • overview, 309

    • practices, 310–312

    • requirements for, 316

    • sterile packaging radiation, 318–319

    • sugar content, 319–320

    • WHO/FAO documentation, 315

  • food processing industry

    • artificial neural network (ANN)

      • application of, 148–172

      • auto-encoders, 146–147

      • baking, 161–166

      • vs. biological network, 137

      • convolutional neural networks (CNNs), 142–143

      • development of, 137–139

      • extrusion, 166–167

      • fermentation, 167–168

      • filtration, 168–169

      • freeze-drying, 154

      • future scope and use of, 172

      • Hopfield network, 144–145

      • Kohonen’s network, 143–144

      • LSTM, 145–146

      • microwave assisted extraction (MAE), 158–160

      • microwave drying, 152

      • microwave vacuum drying, 153–154

      • multi-layer feed-forward networks, 140–141

      • network learning, 137

      • node character, 135

      • optimisation methods, 147–148

      • osmotic dehydration, 154–155

      • RBM and DBM, 145

      • recurrent neural network (RNN), 141–142

      • shelf-life estimation, 170–172

      • single layer feed-forward networks, 140

      • soaking and canning, 169–170

      • solvent extraction (SE), 158

      • super critical fluid extraction (SCFE), 160–161

      • tray drying, 149, 152

      • ultra-sound assisted extraction (UAE), 160

      • vacuum drying, 153

    • biological neural network, 134–135

    • overview, 133–134

  • food shelf-life prediction

    • backpropagation (BP) neural network, 42–43

    • extreme learning machine (ELM), 43–44

    • genetic algorithm–BP, 43

    • machine learning (ML), 41

    • radial basis function (RBF) neural network, 44–45

    • shelf-life prediction, 45

  • food sterilization, 318

  • food supply chain (FSC)

    • agricultural sector, 111–113

    • dairy industry, 113–114

    • meat and poultry industry, 114–115

    • traceability in, 94–96

  • foreign object detection in milk packaging

    • COMSOL Multiphysics, 201

    • dot plot graph, 208

    • experimental setup, 201–203

    • food contamination detection, 194

    • hair, 206, 207

    • invasive and intrusive techniques, 196

    • issues and challenges, 197

    • literature review, 193–197

    • material parameters, 201

    • metal, 203

    • non-invasive and non-intrusive techniques, 197, 198

    • overview, 192–193

    • plastic, 203

    • research methodology, 197–203

    • specification of, 201

    • time arrival analysis, 209–211

    • wave amplitude comparison, 209

  • Fourier transform infrared spectroscopy (FTIR), 263

  • free cell dye method, 218

  • freeze-drying, 154

  • FTIR. See Fourier transform infrared spectroscopy (FTIR)

  • fused deposition modeling (FDM), 252, 274

  • fuzzy logic systems, 102–104

    • AI and modeling applications, 259–260

    • application-control system, 103

    • classical Boolean logic, 103

    • crisp sets, 106

    • defuzzification, 109

    • in food supply chains

      • agricultural sector, 111–113

      • dairy industry, 113–114

      • meat and poultry industry, 114–115

    • framework, 104–106

    • future aspects, 125–126

    • fuzzification, 109

    • fuzzy sets, 106

    • IF–THEN rules, 104

    • inference, 107–108

    • membership functions, 110

    • multivalued logic, 103

    • nonlinear mapping, 104

    • overview, 101–102

    • processing and manufacturing

      • data-driven approach, 118

      • expert-knowledge driven approach, 118, 119

      • fault diagnosis, 118–120

      • process optimization, 121–122

      • production planning, 121–122

      • quality diagnosis sensors, 120–121

      • sensory quality, 115–118

      • storage and distribution, 122–125

    • rule models, 108–109

    • theories, 102–103

  • fuzzy modeling, 102

  • glassy carbon electrode (GCE), 225

  • greenhouse gas emissions (GHG), 89, 260

  • HACCP. See Hazard Analysis and Critical Control Points (HACCP)

  • Halalan Toyyiban safety rating, 120

  • Hazard Analysis and Critical Control Points (HACCP), 311

  • heavy metals detection, 236–237

  • Hopfield network, 144–145

  • Hue angle, 189

  • ICT. See information and communication technologies (ICT)

  • Industry 4.0

    • concept of, 252

    • production technologies, 251

  • information and communication technologies (ICT), 12

  • inkjet printing, 256–257

  • innovations in food technology

    • AI in food processing and packaging, 2–3

    • assessing the quality of foods, 8

    • automation in food production, 3–4

      • cutting automation, 7

      • peeling automation, 6

      • quality control and safety, 7

      • sorting automation, 6

    • challenges and solutions, 14

    • computer vision for detecting defects, 8

    • evolutionary trends in packaging, 12–13

    • future aspects, 16–17

    • incorporating existing systems, 15

    • ingredient usage, 10

    • monitoring and adjusting processing parameters, 10–11

    • optimizing recipes, 10

    • overview, 2

    • predictive maintenance for machinery and equipment, 8–9

    • process optimization, 9–10

    • RFID technology, 13–14

    • robotics, sensors, and AI-driven analytics, 4–5

    • smart packaging solutions, 11–12

    • sustainability and food security, 15–16

    • technical, ethical, and regulatory considerations, 15

  • insect consumption (entomophagy), 261

  • Internet of Things (IoT), 253

    • architecture, 90

    • blockchain types, 91

    • food supply chain (FSC), 94–96

    • precision agriculture, 93–94

    • smart farming, 91–93

    • sustainability, 89

    • systems overview, 89–91

  • ion sensitive biosensors, 223

  • IoT. See Internet of Things (IoT)

  • Karenia brevis, 233

  • Kohonen’s network, 143–144

  • labeled nanoparticles method, 218

  • Listeria monocytogenes, 228, 232

  • long short-term memory (LSTM), 140, 145–146

  • machine learning (ML), 41

  • MAE. See microwave assisted extraction (MAE)

  • magnetism measurements, 220

  • mass spectrometry (MS), 296

  • Materials Genome Initiative (MGI), 276

  • mechanical nanosensors, 220–221

  • membrane-inlet mass spectrometry (MIMS), 292–293

  • metal oxide semiconductor (MOS), 295

  • methyl parathion, 225

  • microwave assisted extraction (MAE), 158–160

  • microwave drying, 152

  • microwave vacuum drying, 153–154

  • MIMS. See membrane-inlet mass spectrometry (MIMS)

  • ML. See machine learning (ML)

  • MOS. See metal oxide semiconductor (MOS)

  • MS. See mass spectrometry (MS)

  • multi-layer feed-forward networks, 140–141

  • multi-walled carbon nanotubes (MWCNTs), 225

  • nanosensors

    • classification of

      • affinity-based nanosensors, 216–217

      • bio-nanosensors, 222–223

      • catalytic-based nanosensors, 217

      • chemical nanosensors, 221–222

      • deployable nanosensors, 222

      • electromagnetic nanosensors, 218–220

      • electrometers, 222

      • mechanical nanosensors, 220–221

      • optical nanosensors, 217–218

    • configurations and hybrid techniques, 223

    • in food safety

      • adulterants detection, 227–228

      • antibiotics detection, 235–236

      • artificial intelligence, 238–239

      • fertilizer and pesticide analytes, 224–227

      • heavy metals detection, 236–237

      • pathogens detection, 228–232

      • toxins detection, 232–235

    • manufacturing of, 215

    • overview, 215–216

  • natural language processing (NLP), 2, 3, 142, 145

  • network learning, 137

  • NLP. See natural language processing (NLP)

  • node character, 135

  • non-destructive method, 31

  • non-halal components, identification of, 27–28

  • ochratoxins (OCT), 234–235

  • O–H and N–H stretching overtone, 32

  • optical nanosensors, 217–218

  • optical sensors, 295

  • optic nanosensors, 221

  • osmotic dehydration, 154–155

  • partial least squares regression (PLSR), 30, 32, 40, 50, 54, 75

  • pathogens detection, 228–232

  • PCA. See principal component analysis (PCA)

  • pesticides, 225

  • pheophorbide, 189

  • photochromatic ink, 96

  • photoionization detectors (PID), 296

  • PID. See photoionization detectors (PID)

  • piezoelectric nanosensors, 221

  • PLSR. See partial least squares regression (PLSR)

  • polymer sensors, 295

  • potentiometric biosensors, 223

  • Practical Byzantine Fault Tolerance (PBFT), 90

  • precision agriculture, 93–94

  • principal component analysis (PCA), 27, 47, 75, 185, 294, 299, 301, 302

  • process optimization, 9–10

  • Proof of Authority (PoA), 90

  • Proof of Stake (PoS), 90

  • Proof of Work (PoW), 90

  • quartz crystal microbalance (QCM), 295

  • radial basis function (RBF) neural network, 44–45

  • radio frequency identification (RFID), 12–14, 94

  • recurrent neural networks (RNNs), 140–142

  • resonant biosensors, 223

  • response surface methodology (RSM), 102

  • restricted Boltzmann machines (RBM), 140, 145, 146, 173

  • RFID. See radio frequency identification (RFID)

  • RNNs. See recurrent neural networks (RNNs)

  • RSM. See response surface methodology (RSM)

  • Salmonella species, 229–230, 232, 239

  • Salmonella typhimurium, 230

  • SAW. See surface acoustic wave (SAW)

  • SCFE. See super critical fluid extraction (SCFE)

  • science of deception, 70

  • screen-printed electrode (SPE), 233

  • SE. See solvent extraction (SE)

  • selective laser sintering (SLS), 252, 256, 257–258

  • shelf-life estimation, 170–172

  • shelf-life prediction, 30–32

  • single layer feed-forward networks, 140

  • SLS. See selective laser sintering (SLS)

  • smart farming, 91–93

  • soaking, 169–170

  • solid phase microextraction (SPME), 288–290

  • solvent extraction (SE), 25, 156, 158

  • SPE. See screen-printed electrode (SPE)

  • SPME. See solid phase microextraction (SPME)

  • Staphylococcal enterotoxin B (SEB), 233

  • Staphylococcus aureus, 228, 231–232

  • static headspace (SHS) method, 287–288

  • statistical data analysis, 299

    • chemometric techniques, 302

    • data interpretation and validation, 302–303

    • frequency-domain features, 301–302

    • pattern recognition, 302

    • signal acquisition, 299–300

    • signal preprocessing, 300–301

    • software and tools, 303

    • statistical and mathematical features, 302

    • time-domain features, 301

    • workflow, 303

  • stereolithography (STL) format files, 276

  • super critical fluid extraction (SCFE), 157, 160–161

  • surface acoustic wave (SAW), 295

  • sustainability, 89

  • TANB. See Tree augmented naïve Bayes algorithm (TANB)

  • TFA. See trans fatty acid (TFA)

  • thermal nanosensors, 221

  • thermal oxidation prediction, 29–30

  • toxins detection, 232–235

  • trans fatty acid (TFA), 30

  • trapping and purging method, 288

  • tray drying, 149, 152

  • Tree Augmented Naïve Bayes algorithm (TANB), 94

  • UFPs. See unconventional food plants (UFPs)

  • ultra-sound assisted extraction (UAE), 160

  • unconventional food plants (UFPs), 184

  • vacuum drying, 153

  • volatile organic compounds (VOCs), 290

  • waste cooking oil, 28–29

  • XG Boost regression model, 277

or Create an Account

Close Modal
Close Modal