Skip to Main Content
Skip Nav Destination
  • 1H-1,2,3-triazole (TA), 87

  • 1H-benzotriazole (BTA), 87

  • 1(H)-naphthotriazole (NTA), 87

  • 4-amino-N-(1,3)-thiazole-2-yl benzene sulfonamide, 85

  • 4-point method, 115

  • AAMMCs. See aluminum alloy metal matrix composites (AAMMCs)

  • AAR. See alkali–aggregate reaction (AAR)

  • ABAQUS CAE software, 19

  • accuracy, 155

  • ACM. See atmosphere corrosion monitoring (ACM)

  • acoustic emission (AE) techniques, 129–130, 226

  • acrylic coatings, 324

  • aerial and satellite imagery, 420–421

  • AE techniques. See acoustic emission (AE) techniques

  • AFM. See atomic force microscopy (AFM)

  • AI. See artificial intelligence (AI)

  • alanine (ALA), 146

  • alkali–aggregate reaction (AAR), 107

  • alkaline environments, 56

  • alkyd coatings, 324

  • AlN. See aluminum nitride (AlN)

  • alternating current (AC), 89

  • AlumadeckTM system, 20

  • alumina (Al2O3), 83, 314–315

  • aluminum, 223, 224

  • aluminum alloy metal matrix composites (AAMMCs), 21

  • aluminum alloys, 19, 59

  • aluminum nitride (AlN), 317

  • aluminum oxide (Al2O3), 6

  • AMBER forcefields, 149

  • ANNs. See artificial neural networks (ANNs)

  • anode, 385–387

  • anodic inhibitors, 287–288

  • anodic protection, 300

  • anodic reaction, 277

  • antifouling coatings, 327

  • AR. See augmented reality (AR)

  • Arrhenius equation, 52

  • artificial intelligence (AI), 133–134, 184

  • artificial neural networks (ANNs), 133, 153–154, 156, 157

  • asphalt, 240

  • atmosphere corrosion monitoring (ACM), 226

  • atmospheric corrosion, 258

  • atmospheric pollutants, 12

  • atomic force microscopy (AFM), 15, 182

  • attenuation coefficient, 125

  • augmented reality (AR), 132–133

  • auxiliary electrodes, 99

  • azoles, 173

  • B3LYP method, 143, 144

  • Bacillus subtilis, 181

  • barrier coatings, 301, 349

  • BBD. See Box–Behnken design (BBD)

  • big data, 209

  • biochemical corrosion, 39–40

  • bio-concrete, 47

  • Box–Behnken design (BBD), 21

  • Building Research Establishment Test, 118

  • CA. See contact angle (CA)

  • calcium aluminate cement (CAC), 177

  • calcium carbonate (CaCO3), 166

  • calcium chloride (CaCl2), 171, 195

  • calcium hydroxide (Ca(OH)2), 194

  • Cambridge Serial Total Energy Package (CASTEP), 144

  • canonical (NVT) ensemble, 148

  • carbonation, 22, 169–170, 197

  • carbonation depth measurement, 120

  • carbonation front, 120

  • carbon dioxide (CO2), 130, 157, 166, 169

  • cathodic inhibitors, 288

  • cathodic protection (CP), 41, 228, 245, 262–263, 282, 300

  • cathodic protection systems (CPS), 43

    • anode, 385–387

    • chemical effects, 383–384

    • conductive environments, 382

    • cost-effective solution, 388

    • DC feeder, 382

    • electrochemical principles, 379–381

    • impressed current systems, 387–388

    • kinetic effects, 383

    • overview, 377–378

    • in real-world applications, 384

    • rectifier-based systems, 385

    • on ships, 385

    • thermodynamic effects, 382–383

  • cathodic reaction, 277–278

  • cavitation corrosion, 41

  • CC. See conversion coatings (CC)

  • cement content determination, 120–121

  • Ce-metal organic frameworks (Ce-MOF), 329

  • ceramic coatings, 312

    • general applications of, 313

    • methods for fabrication of, 318

    • types of ceramic materials, 313

      • non-oxide ceramics, 316–318

      • oxide ceramics, 314–316

  • ceramics, 11

  • CG. See conjugate gradient (CG)

  • chain-drag test method, 108

  • chemical corrosion, 37–38, 258

  • chemical degradation, 63

  • chemical effects, 383–384

  • chitosan-R8 (C-R8), 90

  • chitosan-R12 (C-R12), 90

  • chitosan-R16 (C-R16), 90

  • chloride content determination, 119

  • chloride ion ingress, 168–169

  • chloride ions, 61–62

  • chlorides, 172

  • civil and marine infrastructures

    • future aspects, 406–407

    • passivation, de-passivation, and corrosion, 393–395

    • reinforced concrete, 395–397

    • smart corrosion inhibition

      • controlled release, 397

      • historical buildings, 401–403

      • marine ferro-concretes, 403–406

      • micro–nano carrier encapsulation, 397–400

      • stimulation, 400–401

  • classical Hartree potential, 142

  • clay nanomaterials, 325

  • coastal engineering, 205

  • coatings, 228, 262, 301

    • application techniques, 349–351

    • barrier coatings, 349

    • maintenance and inspection, 351

    • protective coatings, 348–349

    • sacrificial coatings, 348–349

  • coin tap test, 108

  • communication towers, 219

    • corrosion challenges in, 221–225

    • corrosion protection methods in, 228

    • factors and reasons for corrosion in, 222

    • structural integrity and operational dependability of, 221

  • compact tension (CT), 21

  • COMPASS forcefield, 149

  • composite materials, 224, 233

  • computational methods, 140

    • for corrosion in concrete environments, 141

      • density functional theory, 141–146

      • MD simulations, 146–153

  • computer-based methods

    • data management, 415

    • enhanced accuracy, 415

    • future of AI and robotics, 423

    • increased efficiency, 415

    • predictive analytics algorithms, 415–416

    • real-time monitoring, 415

    • remote sensing technologies

      • aerial and satellite imagery, 420–421

      • drones, 417–420

      • geographic information systems, 421–423

      • LiDAR, 416–417

    • role of, 414–416

    • traditional inspection methods

      • non-destructive testing, 412–413

      • radiographic testing, 413–414

      • ultrasonic testing, 413

      • vision-based infrastructure inspection, 412

      • visual inspection, 411–412

  • concrete, 24, 269–272

    • carbonation-induced corrosion in, 197

      • buffering capacity, 198

      • calcite precipitation, 198–199

      • definition, 198

      • diffusion of carbon dioxide, 198

      • dissolution of CO2 in liquid phase, 198

    • chloride-induced corrosion in, 192

      • classification of chlorides in concrete, 194

      • corrosion of reinforcement steel, 196–197

      • diffusion in liquid phase, 193–194

      • formation of soluble chlorides, 194–195

      • interaction with cement aluminates, 195

      • penetration depth and concentration threshold, 193

      • reactive transport phenomenon, 196

      • sources and structural implications of chlorides, 192–193

    • comparative impact of chloride and carbonation, 199

    • composition and properties of, 191

    • durability factors in, 191

      • cement content and aggregate quality, 192

      • curing and permeability, 192

      • environmental and mechanical conditions, 192

      • water quality and concrete compaction, 192

    • overview of corrosion in masonry, 199

    • permeability of, 116

    • steel reinforcement in, 191

    • tests for assessing chemical composition/characteristics of, 118

      • carbonation depth measurement, 120

      • cement content determination, 120–121

      • chloride content determination, 119

      • sulphate content determination, 121

    • tests for assessing physical characteristics of, 111

      • permeability measurements, 116–118

      • rebound hammer test, 113–114

      • resistivity measurement, 114–116

      • ultrasonic pulse velocity, 112–113

  • concrete bridge decks, 241

  • concrete cover layer, 283

  • concrete resistivity, 80

  • conductive liquid, 115

  • conductivity, 59–60

  • conjugate gradient (CG), 147

  • consistent-valence forcefield (CVFF), 149

  • constant phase element (CPE), 94

  • contact angle (CA), 176

  • continuous monitoring, 226

  • conversion coatings (CC), 262, 308

    • for protection of metals, 308

      • chromate conversion coatings, 308–309

      • molybdate conversion coatings, 311

      • phosphate conversion coatings, 309–311

      • titanate conversion coatings, 311–312

      • zirconate conversion coatings, 312

  • copper carbonate (CuCO3), 6

  • copper oxide (CuO), 6

  • corrective maintenance, 261

  • corrosion, 1, 35, 105, 203, 220, 257

    • advanced coating technologies and corrosion modeling techniques, 266

    • bridge corrosion case study, 265–266

    • challenges in communication towers, 221–225

    • coatings

      • application techniques, 349–351

      • barrier coatings, 349

      • maintenance and inspection, 351

      • protective coatings, 348–349

      • sacrificial coatings, 348–349

    • common corrosion issues and mitigation strategies in infrastructure, 13

      • aluminum components, 18–22

      • concrete-reinforced structures, 22–26

      • steel structures, 13–18

    • cost, 51–52

    • definition of, 237–238

    • detection and monitoring, 225–229

    • electrical system design

      • galvanic corrosion, 354–355

      • grounding and bonding techniques, 354

      • proper selection, 355–356

    • electrochemical nature of, 238

    • environmental factors, 346–348

    • exterior design

      • cleaning and maintenance, 362–363

      • prevention of water intrusion, 362

      • weather-resistant cladding materials, 361

    • factors influencing corrosion, 10, 168, 238–239, 259

      • carbonation, 169–170

      • chloride ion ingress, 168–169

      • environmental exposure, 11–12

      • environmental factors, 260

      • maintenance practices, 261

      • material composition, 10–11

      • material factors, 260–261

      • moisture content, 170–171

      • operational conditions, 12–13

    • factors influencing corrosion in transportation structures, 239

    • factors influencing infrastructure corrosion, 52

      • chloride ions, 61–62

      • conductivity, 59–60

      • diffusion, 58–59

      • humidity and rainwater, 60–61

      • microbial activity and soil composition, 62–64

      • oxygen concentration, 57–58

      • pH, 56–57

      • phase type, 55–56

      • pressure, 54–55

      • temperature, 52–54

    • financial consequences, 220

    • fire protection system design

      • impaired sprinkler system, 359

      • proper placement, 359–360

      • testing and maintenance, 360

    • fundamentals of corrosion chemistry, 4

      • formation of corrosion products, 6

      • role of environmental factors, 5–6

    • future trends, 363–364

    • gradual degradation, 343

    • HVAC system design

      • components, 356–357

      • equipment, 356

      • flashback corrosion, 356

      • humidity and moisture control, 357–358

      • regular cleaning and inspection, 358

    • impact of environmental conditions, 171

      • exposure to de-icing salts, 171

      • industrial pollutants, 172–173

      • marine environments, 171–172

    • infrastructure components, 41

      • power grid corrosion, 50–51

      • railroad corrosion, 45–46

      • road corrosion, 44–45

      • in sewers and water supplies, 46–49

      • in subway tunnels, 42–44

    • in masonry, 199

    • material compatibility, 347–348

    • mechanisms, 165

      • breakdown of passive oxide layer, 165–166

      • electrochemical principles, 167

      • formation and role of corrosion cells, 167–168

    • operational stability, 220

    • overview, 342

    • pitting corrosion, 343

    • prevention and control, 245, 261

      • cathodic protection, 245, 262–263

      • maintenance strategies, 246

      • materials selection, 263–264

      • monitoring and inspection, 245

      • protective coating, 245, 262

    • processes, 239

    • protection methods, 37, 229

      • optimal procedures for preserving protective coatings, 230–233

      • optimal procedures for protective coating application, 230

    • recent advances and innovations in mitigation strategies, 173–182

    • relevance and potential applications of research in real-world industries, 205

    • resistant materials, 346

    • safety hazards, 220

    • safety implications of, 2

    • selection of materials, 344–345

    • socio-economic impact, 26–28

    • structural design

      • metal-to-metal contact, 352

      • moisture control, 352–353

      • proper drainage methods, 352–353

      • reinforcement placement, 353

    • types of, 6, 37, 258

      • atmospheric corrosion, 258

      • biochemical corrosion, 39–40

      • chemical corrosion, 37–38, 258

      • corrosion accompanied by erosion, 40–41

      • crevice corrosion, 8–9

      • electrochemical corrosion, 39, 258–259

      • galvanic corrosion, 9

      • pitting corrosion, 8

      • stress-corrosion cracking, 9–10

      • uniform corrosion, 6–7

    • types of corrosion affecting buildings and architectural structures, 206

      • crevice corrosion, 214

      • galvanic corrosion, 210–211

      • intergranular corrosion, 214–215

      • pitting corrosion, 211–214

      • uniform corrosion, 208–210

    • types of transportation infrastructure, 239

      • bridges, 240–242

      • pipelines, 243–244

      • railways, 242–243

      • roads and highways, 240

    • various forms of, 40

    • in various transportation modes, 259

      • maritime transportation, 259

      • railways, 259

      • roads and bridges, 259

  • corrosion cells, 4, 167

  • corrosion inhibitors, 167, 173, 182, 232, 282

    • concrete, 269–272

    • mechanism, types, importance and protection methods, 276

      • anodic reaction, 277

      • cathodic reaction, 277–278

    • reinforced concrete corrosion, 279–281

      • anodic inhibitors, 287–288

      • cathodic inhibitors, 288

      • inorganic inhibitors, 286

      • ionic liquids, 286–287

      • mixed inhibitors, 288–289

      • organic inhibitors, 284–286

    • reinforced concrete structures, 272–274, 281

    • steel rebars, 274–276

  • corrosion protection coatings (CPL), 49

  • cover meter surveys, 109

  • CP. See cathodic protection (CP)

  • CPE. See constant phase element (CPE)

  • CPL. See corrosion protection coatings (CPL)

  • CPS. See cathodic protection systems (CPS)

  • crevice corrosion, 8–9, 206, 207, 214

  • CV. See cyclic voltammetry (CV)

  • CVFF. See consistent-valence forcefield (CVFF)

  • cyclic polarization, 87–89

  • cyclic voltammetry (CV), 96–98, 180

  • data management, 415

  • DC feeder, 382

  • DCNNs. See deep convolutional neural networks (DCNNs)

  • decision-making process, 154

  • decision trees, 154

  • deep convolutional neural networks (DCNNs), 127

  • de-icing salts, 171

  • density functional theory (DFT), 140–146, 158, 159, 178

  • density of states (DOS), 144

  • DFT. See density functional theory (DFT)

  • DIA. See digital image analysis (DIA)

  • diffusion, 58–59

  • digital image analysis (DIA), 110–111

  • dissimilar-joining, 330

  • dissimilar metal corrosion, 9

  • dissolution process, 92

  • dissolution reaction mechanism, 90

  • double-sided friction stir welding (DS-FSW), 21

  • double-walled smart encapsulated corrosion inhibitor, 398, 399

  • drones, 417–420

  • dry corrosion, 37

  • dry–wet processes, 43

  • DS-FSW. See double-sided friction stir welding (DS-FSW)

  • dual-action mechanism, 182

  • (E)-1-octyl-3-(2-(5-oxo-4,4-diphenyl)-4,5-dihydro-1H-imidazol-2-yl)hydrazono)indolin-2-one (OPHIHI), 178

  • (E)-3-(2-(5-oxo-4,4-diphenyl)-4,5-dihydro-1H-imidazol-2-yl)hydrazono)indolin-2-one (OIHIHI), 178

  • EBSD. See electron backscatter diffraction (EBSD)

  • ECM. See electrochemical corrosion monitoring (ECM)

  • eddy current testing, 414

  • EDS. See energy-dispersive spectroscopy (EDS)

  • EDT. See electrochemical deposition treatment (EDT)

  • EDX. See energy dispersive X-ray spectroscopy (EDX)

  • EIS. See electrochemical impedance spectroscopy (EIS)

  • electrical system design

    • galvanic corrosion, 354–355

    • grounding and bonding techniques, 354

    • proper selection, 355–356

  • electrochemical analysis, 53

  • electrochemical corrosion, 39, 258–259

  • electrochemical corrosion monitoring (ECM), 75

    • environmental factors, 98–99

    • interpretation of data, 98

    • overview of, 76

      • cyclic polarization, 87–89

      • cyclic voltammetry, 96–98

      • electrochemical impedance spectroscopy, 89–96

      • linear polarization resistance, 76–81

      • potentiodynamic polarization, 81–86

    • sensor selection and placement, 99

      • advances in sensor technology, 99–100

      • non-intrusive corrosion monitoring techniques, 100

  • electrochemical corrosion process, 303

  • electrochemical deposition treatment (EDT), 25

  • electrochemical impedance spectroscopy (EIS), 15, 16, 17, 84, 89–96, 175, 184

  • electrochemical techniques, 2, 36, 50, 174, 283

  • electromagnetic methods, 100

  • electron backscatter diffraction (EBSD), 21

  • electron microscopy, 54

  • electrons, 167

  • embeddable sensors, 130–132

  • (E)-N′-(4-(dimethylamino)-benzylidene)-2-(5-methoxy-2-methyl-1H-indol-3-yl)aceto-hydrazide (HIND), 15

  • energy-dispersive spectroscopy (EDS), 15, 214

  • energy dispersive X-ray spectroscopy (EDX), 176

  • environmental factors, 98–99, 302

  • environmental monitoring, 230–231

  • environmental pollution, 51

  • environmental remediation, 51

  • environmental sensors, 229

  • epoxy coatings, 323

  • equivalent circuit modeling, 90

  • Escherichia coli, 181

  • evolutionary machine learning algorithms, 154

  • F1 score, 156

  • FCA. See full-cost accounting (FCA)

  • FEA. See finite element analysis (FEA)

  • feature selection, 155

  • FEM. See finite element methods (FEM)

  • FESEM. See field emission scanning electron microscopy (FESEM)

  • fiber-reinforced composites, 11

  • fiber-reinforced polymers (FRPs), 22, 183, 184

  • field emission scanning electron microscopy (FESEM), 15, 21

  • Figg’s air permeability method, 117–118

  • filiform corrosion (FFC), 302

  • finite element analysis (FEA), 19, 20

  • finite element methods (FEM), 177

  • fire protection system design

    • impaired sprinkler system, 359

    • proper placement, 359–360

    • testing and maintenance, 360

  • first-order reliability method (FORM), 20

  • flashback corrosion, 356

  • fly ash, 158

  • forcefields, 148

    • classical forcefields, 149

      • AMBER forcefields, 149

      • COMPASS forcefield, 149

      • consistent-valence forcefield, 149

      • universal forcefield, 149

    • ReaxFF forcefield, 149

      • AuCSOH.ff (Au/C/S/O/H), 150

      • CuCl–H2O.ff (Cu/Cl/H/O), 149

      • FeOCHCl.ff (Fe/O/C/H/Cl), 149–150

  • Forcite module, 153

  • FORM. See first-order reliability method (FORM)

  • Fourier-transform infrared spectroscopy (FTIR), 22, 176

  • Friedel’s salt, 194

  • FRPs. See fiber-reinforced polymers (FRPs)

  • FTIR. See Fourier-transform infrared spectroscopy (FTIR)

  • full-cost accounting (FCA), 52

  • Galloping Gertie, 2

  • galvanic corrosion, 9, 206, 207, 210–211, 354–355

  • galvanized steel (GS), 80, 224

  • GAs. See genetic algorithms (GAs)

  • gas tungsten arc cladding, 330

  • general corrosion, 6

  • generalized gradient approximation (GGA), 143

  • genetic algorithms (GAs), 154

  • geographic information systems (GIS), 421–423

  • GGA. See generalized gradient approximation (GGA)

  • GIS. See geographic information systems (GIS)

  • GLCM. See gray-level co-occurrence matrix (GLCM)

  • GNPs. See graphene nanoplatelets (GNPs)

  • grand canonical (μVT) ensemble, 147

  • graphene nanoplatelets (GNPs), 178, 179

  • gravimetric analysis, 91

  • gray-level co-occurrence matrix (GLCM), 412

  • greenhouse gas emissions, 24

  • GridSearchCV method, 156

  • gross national product (GNP), 74

  • ground-penetrating radar (GPR), 184

  • Gumbel model, 43

  • half-cell potential (HCP), 121–123

  • halloysite nanotube (HNT), 399

  • hammer test, 108

  • Hartree–Fock method, 144

  • high-density polyethylene (HDPE), 231

  • HVAC system design

    • components, 356–357

    • equipment, 356

    • flashback corrosion, 356

    • humidity and moisture control, 357–358

    • regular cleaning and inspection, 358

  • hybrid coatings, 327, 328

  • hydration, 270

  • hydrogen sulfide (H2S), 46, 47, 48

  • hydroxyapatite (HA), 317

  • ICCP system. See impressed current cathodic protection (ICCP) system

  • icephobic coatings, 330

  • IDA. See incremental dynamic analysis (IDA)

  • imidazolines, 173

  • impact echo (IE) method, 127–129

  • impaired sprinkler system, 359

  • impressed current cathodic protection (ICCP) system, 42, 231, 263

  • impressed current systems, 387–388

  • incremental dynamic analysis (IDA), 49

  • induction heating (IH), 127

  • industrial pollutants, 172–173

  • inert chlorides, 194

  • infrared thermography (IR), 127

  • infrastructure corrosion, 52, 60

  • inhibitors, 284

  • initial surface absorption test (ISAT), 117–118

  • inorganic inhibitors, 286

  • interdisciplinary methods, 184

  • intergranular corrosion, 19, 53, 207

    • stress corrosion cracking, 215–216

  • Internet of Things (IoT), 233

  • interpretation of data, 98

  • ionic liquids, 286–287

  • ISAT. See initial surface absorption test (ISAT)

  • isobaric–isothermal (NPT) ensemble, 147

  • Keras, 156

  • kinetic effects, 383

  • Kohn–Sham equations, 142, 143

  • LAMMPS software, 150

  • Langmuir adsorption isotherm model, 182

  • Langmuir adsorption model, 21

  • Langmuir kinetic model, 91

  • laser-induced breakdown spectroscopy (LIBS), 100

  • layered double hydroxides (LDHs), 146, 399

  • LDA. See local density approximation (LDA)

  • LGBM. See light gradient boosting machine (LGBM)

  • LIBS. See laser-induced breakdown spectroscopy (LIBS)

  • LiDAR, 416–417

  • light gradient boosting machine (LGBM), 24

  • limit state function (LSF), 20

  • linear polarisation resistance (LPR), 76–81, 121, 123–124, 132

  • linear regression, 153

  • liquid penetrant testing, 414

  • local density approximation (LDA), 143

  • localized corrosion, 39

  • logistic regression, 153

  • LPR. See linear polarisation resistance (LPR)

  • machine learning (ML), 98, 111, 133–134, 153, 159, 184, 209

    • analysis of machine learning performance metrics, 155

      • accuracy, 155

      • F1 score, 156

      • mean squared error, 156

      • precision and recall, 155

    • artificial neural networks, 153–154

    • decision trees, 154

    • evolutionary machine learning algorithms, 154

    • feature selection in, 155

    • genetic algorithms, 154

    • structure and modeling methods, 153

    • support vector machines, 154

  • MAE. See mean absolute error (MAE)

  • magnesium (Mg), 211

  • magnesium chloride (MgCl2), 25, 171, 194

  • magnesium hydroxide (Mg(OH)2), 195

  • magnetic particle testing, 413–414

  • marine engineering, 205

  • marine environments, 171–172

  • marine infrastructures, 403–406

  • material selection, 228, 263–264

  • maximum ground velocity (MGV), 49

  • MD simulations. See molecular dynamics (MD) simulations

  • mean absolute error (MAE), 157

  • mean squared error (MSE), 156, 157

  • metallic coatings, 262, 304

    • application of, 305–308

    • application techniques, 304–305

  • MGV. See maximum ground velocity (MGV)

  • MIC. See microbiologically influenced corrosion (MIC)

  • micro-arc oxidation (MAO) process, 314

  • microbial activity, 62–64

  • microbiologically influenced corrosion (MIC), 39, 47, 243, 314

  • microcanonical (NVE) ensemble, 147

  • micro-computed tomography (micro-CT), 178

  • micro–nano carrier encapsulation, 397–400

  • mixed inhibitors, 288–289

  • ML. See machine learning (ML)

  • MLR. See multiple linear regression (MLR)

  • modified Figg’s method, 118

  • moisture content, 170–171

  • molecular dynamics (MD) simulations, 140, 146, 158, 159, 178

    • forcefields in, 148–150

    • foundations of, 146–147

    • performing MD simulations, 147

      • energy minimization, 147

      • ensembles and periodic boundary conditions, 147–148

  • MSE. See mean squared error (MSE)

  • multi-coloured indicators, 120

  • multiple linear regression (MLR), 157

  • N′-[(1Z)-1-(4-chlorophenyl)ethylidene]pyridine-4-carbohydrazide (CEI), 181

  • N′-[(Z)-(4-bromophenyl)methylidene]pyridine-4-carbohydrazide (BBI), 181

  • nano-ferrite (NF), 329

  • nano-fillers, 173

  • nanosilica (NS), 178, 179

  • natural hydrogen electrode (NHE), 123

  • NDT. See non-destructive testing (NDT)

  • Nernst–Planck (NP) formulation, 177

  • Newton’s second law, 147

  • NHE. See natural hydrogen electrode (NHE)

  • niobium (Nb), 316

  • niobium oxide (Nb2O5), 316

  • nitrogen oxides (NOx), 5, 12, 172

  • noble metals, 259

  • non-destructive evaluation/damage progression analysis (NDE/DPA), 127

  • nondestructive inspection (NDI) techniques, 224

  • non-destructive testing (NDT), 106, 124, 127, 245, 412–413

    • acoustic emission, 129–130

    • augmented reality and virtual reality, 132–133

    • embeddable sensors, 130–132

    • impact echo, 127–129

    • machine learning and artificial intelligence assisted analysis, 133–134

    • radiographic testing, 125–126

    • thermographic testing, 126–127

  • non-intrusive corrosion monitoring techniques, 100

  • non-oxide ceramics, 316

    • aluminum nitride, 317

    • hydroxyapatite, 317

    • silicon carbide, 316–317

    • silicon nitride, 317

    • titanium nitride, 317–318

  • numerical analysis, 49

  • Nyquist plots, 89, 90, 94

  • OCP. See open-circuit potential (OCP)

  • OCT. See optical coherence tomography (OCT)

  • one-stage melt-quench technique, 85

  • online monitoring techniques, 54

  • OPC. See ordinary Portland cement (OPC)

  • open-circuit potential (OCP), 78, 84

  • optical coherence tomography (OCT), 100

  • ordinary Portland cement (OPC), 177

  • organic coatings, 262, 300, 318

    • functions and applications of, 318–322

    • modifications in, 322

      • antifouling coatings and surfaces, 327

      • self-healing coatings, 322–326

      • water-repelling coatings, 326–327

    • types of, 322

  • organic inhibitors, 284–286

  • organometallic compounds, 284

  • oxide ceramics, 314

    • alumina ceramic coatings, 314–315

    • niobium oxide, 316

    • silicon dioxide, 316

    • titanium dioxide, 315

    • zirconium dioxide, 315–316

  • oxygen, 5

    • concentration, 57–58

  • partial dependence plots (PDP), 158

  • passive thermography, 127

  • PBCs. See periodic boundary conditions (PBCs)

  • PDP. See partial dependence plots (PDP); potentiodynamic polarisation (PDP)

  • Pearson correlation coefficients, 157

  • periodic boundary conditions (PBCs), 148

  • pH, 56–57

  • phosphate glass (PG), 85

  • pH-sensitive polymers, 325

  • phytochemical analysis, 21

  • pitting corrosion, 8, 13, 206, 207, 211–214

  • plasma electrolytic oxidation (PEO) process, 314

  • polarization resistance (PR), 80, 82

  • polyethylene terephthalate (PET), 24

  • polymethyl siloxanes (PDMS), 326

  • polyurethane coatings, 174, 323

  • Portland cement, 116

  • positive predictive value, 155

  • potentiodynamic curves, 83

  • potentiodynamic polarisation (PDP), 81–86, 121, 181

  • power grid corrosion, 50–51

  • PR. See polarization resistance (PR)

  • precision, 155

  • predictive analytics algorithms, 415–416

  • preventive maintenance, 261

  • protective coatings, 172, 208, 210, 222, 230, 245, 262, 300, 348–349

    • for infrastructure developments, 331

      • challenges, 331–332

      • future breakthroughs, 332

    • protection mechanisms of, 301

      • general failure mechanism of coatings used for infrastructure protection, 302–303

      • understanding failure mechanism, 303–304

  • protective hybrid coatings, 327–331

  • quantum chemical calculations, 91

  • quasi-Newton (QN) methods, 147

  • radiographic testing (RT), 125–126

    • eddy current testing, 414

    • liquid penetrant testing, 414

    • magnetic particle testing, 413–414

  • railroad corrosion, 45–46

  • railway tracks, 242

  • rainfall, 260

  • random forest regression (RFR), 156, 157

  • RC. See reinforced concrete (RC)

  • rebound hammer test, 113–114

  • recall, 155

  • reference electrodes, 82, 99, 131, 231

  • reflective coatings, 301

  • reinforced concrete (RC), 17, 41, 62, 106

    • corrosion, 279–281

      • anodic inhibitors, 287–288

      • cathodic inhibitors, 288

      • effects on seismic resilience of buildings, 289–290

      • inorganic inhibitors, 286

      • ionic liquids, 286–287

      • mixed inhibitors, 288–289

      • natural products as corrosion inhibitors in, 289

      • organic inhibitors, 284–286

    • structures, 272–274

      • cathodic protection, 282

      • concrete cover layer, 283

      • concrete formulation and concrete quality, 283

      • concrete repair and sealing, 283

      • corrosion inhibitors, 282

      • corrosion-resistant materials, 282

      • design and construction practices, 283–284

      • electrochemical techniques, 283

      • maintenance and monitoring, 284

      • surface coatings and insulation materials, 282

  • reinforcement bars, 274

  • reinforcement corrosion, 121

    • half-cell potential, 121–123

    • linear polarisation resistance, 123–124

  • relative humidity (RH), 23

  • reliability index (RI), 20

  • remote sensing technologies

    • aerial and satellite imagery, 420–421

    • drones, 417–420

    • geographic information systems, 421–423

    • LiDAR, 416–417

  • remote visual inspection (RVI), 109–110

  • resistance coefficient, 179

  • resistance reducing agents (RRA), 50

  • resistivity measurement, 114–116

  • RFR. See random forest regression (RFR)

  • RH. See relative humidity (RH)

  • Rheum ribes (RR) root extract, 176

  • RI. See reliability index (RI)

  • RMSE. See root mean squared error (RMSE)

  • road corrosion, 44–45

  • root mean squared error (RMSE), 157

  • RRA. See resistance reducing agents (RRA)

  • RT. See radiographic testing (RT)

  • rust, 6

    • allowance, 283

    • staining, 22

  • RVI. See remote visual inspection (RVI)

  • sacrificial coatings, 301, 348–349

  • salt crusts, 172

  • salt spray testing (SST), 92

  • saturated calomel electrode (SCE), 123

  • scanning electron microscopy (SEM), 22, 46, 91, 182, 214

  • SCC. See stress-corrosion cracking (SCC)

  • SCE. See saturated calomel electrode (SCE)

  • Schmidt rebound hammer, 114

  • Schrödinger equation, 141, 143

  • Scikit-Learn, 156

  • SCMs. See supplementary cementitious materials (SCMs)

  • self-consistent-charge density-functional tight-binding (SCC-DFTB) simulations, 16

  • self-healing coatings, 232, 301–302, 322–326

  • self-healing polyurethanes, 174

  • self-repairing coatings, 174, 325

  • SEM. See scanning electron microscopy (SEM)

  • sensitivity, 155

  • SFRC. See steel fiber-reinforced concrete (SFRC)

  • SHapley Additive exPlanations (SHAP), 158

  • SHM. See structural health monitoring (SHM)

  • silicon carbide (SiC), 21, 83, 226, 316–317

  • silicon dioxide (SiO2), 316

  • silicon nitride (Si3N4), 317

  • slow diffusion mechanisms, 58

  • smart corrosion inhibition

    • controlled release, 397

    • historical buildings, 401–403

    • marine ferro-concretes, 403–406

    • micro–nano carrier encapsulation, 397–400

    • schematic cross-section, 398

    • stimulation, 400–401

  • smart sensor integration, 233

  • SOB. See sulfide-oxidizing bacteria (SOB)

  • socio-economic impact, 26–28

  • sodium chloride (NaCl), 5, 17, 171, 175, 177, 194

  • sodium hydroxide (NaOH), 25, 195

  • sodium hypochlorite (NaOCl), 48, 49

  • soil acidity, 63

  • soil composition, 62–64

  • soil–structure interaction (SSI), 62

  • solar panels, 205

  • sol–gel reactions, 327

  • soluble chlorides, 194

  • SRA. See structural reliability assessment (SRA)

  • SRB. See sulfate-reducing bacteria (SRB)

  • SS. See stainless steel (SS)

  • SST. See salt spray testing (SST)

  • stainless steel (SS), 42, 50, 88, 224

  • steel alloys, 264

  • steel bridge decks, 241

  • steel fiber-reinforced concrete (SFRC), 14

  • steel rebars, 274–276

  • steel-reinforced concrete, 164

  • steel reinforcement, 164, 166, 173, 240

  • steepest descent (SD), 147

  • Stern–Geary constant, 124

  • Stern–Geary model, 80

  • stray current (SC), 14

  • stress-corrosion cracking (SCC), 9–10, 12, 207, 215–216, 239

  • structural health monitoring (SHM), 127, 229

  • structural reliability assessment (SRA), 19

  • structure–property relationships, 141

  • subway tunnels, 42–44

  • sulfate-reducing bacteria (SRB), 48

  • sulfide-oxidizing bacteria (SOB), 48

  • sulfur dioxide (SO2), 5, 12, 172

  • sulfuric acid (H3SO4), 172

  • sulphate content determination, 121

  • superhydrophobic coatings, 326–327

  • supplementary cementitious materials (SCMs), 156–157

  • support vector machines (SVMs), 154

  • support vector regression (SVR), 156, 157

  • surface coatings, 182, 282

  • surface moisture measurement, 108–109

  • suspension bridges, 241–242

  • SVMs. See support vector machines (SVMs)

  • SVR. See support vector regression (SVR)

  • Tafel curve techniques, 79, 80

  • tapping survey, 108

  • TDS. See triethanolamine dodecylbenzene sulfonate (TDS)

  • TEM. See transmission electron microscopy (TEM)

  • temperature, 52–54

  • tetraethyl orthosilicate (TEOS), 329

  • TGA. See thermogravimetric analysis (TGA)

  • thermal oxidation (TO) technique, 315

  • thermal resistance, 301

  • thermal spraying, 330

  • thermodynamic effects, 382–383

  • thermographic testing, 126–127

  • thermogravimetric analysis (TGA), 176

  • Ti6Al4V alloy, 315

  • tight-binding density functional theory (DFTB), 178

  • titanium dioxide (TiO2), 315

  • titanium nitride (TiN), 317–318

  • tragic recent events, 409

  • transmission electron microscopy (TEM), 176–177

  • transmitter, 112

  • transportation infrastructure

    • corrosion, 258

    • emerging threats, 247

    • innovative solutions, 247

    • notable corrosion incidents in, 246–247

    • research and development needs, 247

    • types of, 239

      • bridges, 240–242

      • pipelines, 243–244

      • railways, 242–243

      • roads and highways, 240

  • transportation networks, 237

  • tri(bis(2-ethylhexyl)phosphate) (Ce(DEHP)3), 328

  • tricalcium aluminate (C3A), 195

  • triethanolamine dodecylbenzene sulfonate (TDS), 151

  • triethanolamine phosphate (TP), 151

  • triethyl-ammonium-3-silatranylpropyldithio-carbamate (Silt-DTC), 91

  • UAVs. See unmanned aerial vehicles (UAVs)

  • ultrahigh-strength steel (UHSS), 91

  • ultrasonic pulse velocity (UPV), 112–113

  • ultrasonic techniques, 100

  • ultrasonic testing (UT), 184, 225, 413

  • ultrasonic wave, 112

  • ultraviolet (UV) radiation, 240

  • uniform corrosion, 6–7, 13, 39, 207, 208–210

  • universal forcefield (UFF), 149

  • unmanned aerial vehicles (UAVs), 110, 229

  • UPV. See ultrasonic pulse velocity (UPV)

  • UT. See ultrasonic testing (UT)

  • verdigris, 6

  • Vienna Ab Initio Simulation Package (VASP), 144

  • vinyl coating, 324

  • virtual reality (VR), 132–133

  • vision-based infrastructure inspection, 412

  • visual inspection techniques, 107

    • chain-drag test method, 108

    • cover meter surveys, 109

    • recent advancements in, 109

      • digital image analysis, 110–111

      • remote visual inspection, 109–110

    • surface moisture measurement, 108–109

    • tapping survey/hammer test/coin tap test, 108

  • visual techniques, 106–111

  • Volhard method, 119

  • water-repelling coatings, 302, 326–327

  • weathering steel, 11

  • Wenner four-probe, 80

  • Wenner method, 115

  • Wet-Bulb Globe Temperature (WBGT) index, 61

  • wet–dry cycling environment, 175

  • wind turbines, 205

  • working electrodes, 82, 89, 99

  • XGBoost, 156, 157

  • XPS. See X-ray photoelectron spectroscopy (XPS)

  • X-ray diffraction (XRD), 15, 96

  • X-ray fluorescence spectrometry, 119

  • X-ray photoelectron spectroscopy (XPS), 15, 213

  • X-ray radiography, 126

  • XRD. See X-ray diffraction (XRD)

  • Young modulus, 178

  • zinc-rich coatings, 174

  • zinc-rich epoxy (ZRE), 329

  • zirconium dioxide (ZrO2), 315–316

or Create an Account

Close Modal
Close Modal