Skip to Main Content
Skip Nav Destination

Spin diffusion of 13C polarization in NMR provides 13C−13C distances under magic angle spinning over a broad spectral width. However, there are difficulties in obtaining the distances accurately in uniformly 13C-labeled molecular complexes in solids. Effects of the weak long-range couplings are suppressed by strong short-range couplings. In addition, direct polarization transfer should be distinguished from relayed transfer. To address these issues, polarization-transfer rate matrix analysis has been applied to the 13C-driven spin diffusion in a uniformly 13C-labeled bacteriochlorophyll c assembly. The transfer rates due to direct dipolar couplings were derived by matrix analysis. Distances were obtained from the rates by perturbation theory for spin diffusion using zero-quantum lineshapes. This procedure gave distances up to 6 Å with an accuracy of 25−50%. Correction of the distances from the zero-quantum lineshapes improved the accuracy by about 5−15%. These results show that rate matrix analysis is beneficial for distance analysis of molecular complexes for solid-state NMR. Also, the coefficient and anisotropy of 13C spin diffusion in solids are discussed quantitatively.

You do not currently have access to this chapter, but see below options to check access via your institution or sign in to purchase.
Don't already have an account? Register
Close Modal

or Create an Account

Close Modal
Close Modal