Skip to Main Content
Skip Nav Destination

The heritability of schizophrenia has been estimated to be approximately 80%, but years of linkage and association studies have turned up few robust or overlapping results. However, improvements in genetic methods and increased sample sizes may yet account for the apparent “missing heritability”. The longstanding polygenetic hypothesis states that many common variants of low effect size contribute to the disorder. As sample sizes increase, these variants become detectable amidst the sea of noise. Rare, higher risk variants are also becoming detectable with improvements in genetic testing. With rare, high risk, but incompletely penetrant structural variations, and common, low risk variants highly subject to epistasis and environment, the true intricacy of the genetic architecture of schizophrenia is becoming clear. The manner in which genes conspire with the environment to generate psychiatric symptoms is complex and pleiotropic. Truly understanding the genetic underpinnings of schizophrenia may require rethinking the concept of schizophrenia as a unified syndrome. Instead, the genetic origin of variation in endophenotypes, or in particular symptom domains, may be more easily discovered. Genetic testing may never be useful as a diagnostic tool for schizophrenia, but genetics is important for directing our efforts into understanding the biology of this complex disorder.

If you know the enemy and know yourself, you need not fear the result of a hundred battles. If you know yourself but not the enemy, for every victory gained you will also suffer a defeat. If you know neither the enemy nor yourself, you will succumb in every battle.

Sun Tzu, The Art of War

The greatest difficulty in finding treatments for schizophrenia is that we do not know the enemy well enough. Revealing the complex etiology and pathophysiology of schizophrenia has posed a considerable challenge for researchers, but improving technology is now enhancing our ability to use the wellspring of information present in the genome to help find these answers. It is more than three decades since the first development of genome sequencing technology,1  and we have come to appreciate the intricate way in which variations in the genome can influence disease. Genetic research has provided insights into elucidating the pathophysiology of many diseases,2,3  and also promises to improve clinical outcomes through personalized treatments and targeted therapeutics.4–6  Studying the genetics of schizophrenia is important to discover genes and pathways that contribute to its development. The hope is that the symptoms of schizophrenia can be prevented or resolved by targeting therapeutics at these pathways. Still, treatment is most likely to be administered late in the development of the disorder, after diagnosable symptoms have already presented. By this time, the processes leading to the development of schizophrenia may have caused permanent changes; for example, alterations in brain morphology. Genetics can also help us to understand the underlying pathophysiology of the individual symptoms of schizophrenia, allowing for the development of targeted therapeutics to improve the lives of patients by treating symptoms after developmental pathways have become fixed. Whether to understand developmental processes or symptom pathophysiology, the study of the genetics of schizophrenia has great potential in helping us to understand the enemy, and hopefully, eventually, to conquer schizophrenia.

It is now understood that genes and environment work together to influence the development of disease. The power of genetics to enable us to understand a disease is dependent upon how much of the variance in liability is contributed by genes compared to other factors. It is also important to consider the manner in which genes affect phenotype. The heritability and genetic architecture of schizophrenia tell us how genetic information can be used to understand the disorder.

The contribution of genes in determining a given phenotype can be quantified by estimating heritability. Heritability is a mathematical expression of the amount of variance in phenotype that is explained by genetic variation. This does not measure how much phenotypic variation is caused by genes; rather, it reflects the relative contribution of genetic vs. non-genetic factors in determining phenotype. Heritability is estimated by comparing the liability of developing a trait (schizophrenia, for example) between related and unrelated individuals.7,8  Twin studies have been invaluable for estimating heritability, as it is easier to differentiate between genetics and shared vs. differential environment in such studies.9  The concordance in phenotype between monozygotic (MZ) and dizygotic (DZ) twins gives a measure of the correlation between genotypic variation and presence of a trait. MZ concordance rates for schizophrenia have been reported between 41% and 65%, with DZ concordance ranging from 0% to 28%.10,11  Since DZ twins have approximately half the genetic variance of unrelated individuals, and MZ twins have identical genomes, heritability can be crudely calculated as twice the difference in concordance (r) between MZ and DZ twins (see eqn 1.1).8 

Equation 1.1

Hence, the heritability for schizophrenia estimated from twin studies is 81% (95% confidence interval 73–90%).10–13  A limitation of twin studies is that subjects are usually recruited from restricted environmental settings, typically from within the same hospital. Heritability estimates using family data from national records are lower, at 64–67%.12,14  This difference may be due to increased variance in environment and diagnostic interpretations when using subjects from national records. Either way, schizophrenia is clearly one of the most heritable neuropsychiatric disorders, demonstrating that genes have a large role to play.

The high estimated heritability for schizophrenia indicates that the genome contains information explaining much of the underlying pathophysiology of the disorder. So far, all the variants taken together from current genome-wide association study (GWAS) results have been calculated to account for 20–40% of the variation in liability for schizophrenia.15–18  Even using lower family-based estimates for comparison, current results do not account for all of the predicted heritability. The term “missing heritability” was coined to describe this discrepancy between the proportion of phenotypic variation explained by results from genetic studies and the total estimated heritability.19  Current evidence suggests that we may yet find a large proportion of this missing heritability within the genome. Part of the missing heritability may also be due to epigenetic DNA and chromatin modifications that alter gene expression without changing DNA sequence. Increased sample sizes and more complete coverage of variants with improved genotyping technologies have already uncovered many new significant schizophrenia-associated genetic loci. We can be optimistic that continuing efforts in interrogating the human genome will reveal ever increasing numbers of causal variants. This information promises to provide key insights into the mechanisms underlying the development of schizophrenia.

Genetic studies have now discovered enough associated risk variants to give an empirical view of the genetic architecture of schizophrenia.20–22  Schizophrenia is a complex, highly polygenic disorder with multiple variants conferring risk. Numerous variants with population frequencies >1% have been associated with schizophrenia. Alongside these common variants, rare variants with frequencies <0.1%, resulting from de novo mutations and large-effect structural variations, are implicated in the disorder. The effect size of schizophrenia associated variants is inversely proportional to their population frequency. Effect size encompasses the idea of penetrance. Penetrance reflects the amount an individual variant contributes to a phenotype, with completely penetrant variants guaranteeing the presentation of a trait, and incomplete and low penetrant variants only incrementally increasing the probability of possessing that trait.

The allelic spectrum of schizophrenia risk is depicted in Figure 1.1. Multiple low effect common variants with odds ratios (ORs) typically <1.3 and moderate to high effect, but still incompletely penetrant rare variants contribute to risk. Risk variants can combine additively where each locus adds/subtracts a certain amount of risk, or multiplicatively where a certain number or arrangement of loci must be present to reach a threshold to increase risk. A purely additive model of gene interaction does not explain the genetics of schizophrenia.23–25  Therefore, the genetic architecture of schizophrenia probably involves thousands of risk variants which interact multiplicatively and are highly susceptible to genetic background, pleiotropy, and, of course, environmental effects. Unaffected individuals probably carry manageable numbers of risk variants, while the probability of developing schizophrenia rises sharply for individuals with a high burden of risk alleles. While this picture suggests that common variants are unlikely to be essential alone, the multiplicative nature of their effects means that single risk variants can still exert biologically meaningful effects, depending on the genetic background.24  Hence, associated common variants still warrant functional investigation alongside higher risk rare variants. The picture so far suggests that understanding the genetic causes of schizophrenia will involve understanding not only the functional relevance of individual genes, but also how multiple genes interact and converge on molecular pathways to affect behaviour.

Figure 1.1

Schizophrenia-associated loci with risk allele population frequency (AF) plotted against the effect size, given as the odds ratio (OR) for genotypic relative risk (GRR). Confidence intervals are not shown. The red triangles depict structural variants and the blue circles depict common variants. Associated variants tend to cluster into two groups: rare variants with intermediate effect size and common variants with low effect size. There are no known mendelian variants for schizophrenia (AF<0.001, GRR>50), with associated rare variants having intermediate to low GRR. None of the associated common variants have a GRR>1.5. GWAS: genome-wide association study. This figure is adapted by permission from Macmillan Publishers Ltd: Nature Reviews Genetics,20  copyright (2012).

Figure 1.1

Schizophrenia-associated loci with risk allele population frequency (AF) plotted against the effect size, given as the odds ratio (OR) for genotypic relative risk (GRR). Confidence intervals are not shown. The red triangles depict structural variants and the blue circles depict common variants. Associated variants tend to cluster into two groups: rare variants with intermediate effect size and common variants with low effect size. There are no known mendelian variants for schizophrenia (AF<0.001, GRR>50), with associated rare variants having intermediate to low GRR. None of the associated common variants have a GRR>1.5. GWAS: genome-wide association study. This figure is adapted by permission from Macmillan Publishers Ltd: Nature Reviews Genetics,20  copyright (2012).

Close modal

New technologies are constantly improving our ability to read the human genome and detect genetic variation between individuals. Genomes vary in many ways, from single nucleotide polymorphisms (SNPs) to more severe structural variations such as copy number variations (CNVs). SNPs are the most common type of variation.26  Structural variants have a greater potential to cause disruptions in genes simply due to their size, and hence large-effect rare variants tend to be of the structural type; however, other variants can still have large effects.27  A simple schematic of the types of variation is given in Figure 1.2. Different techniques and technologies are better for detecting specific types of variation, so study design and genotyping methods must be tailored to the type of variation relevant to the specific research question.

Figure 1.2

A schematic of DNA variation. A depicts the different types of DNA variation. Single nucleotide polymorphisms (SNPs) are the most common type of variation, consisting of the substitution of a single nucleotide for another. Single or small numbers of nucleotide insertions and deletions also occur. Microsatellites are very common variations in the human genome, consisting of varying numbers of consecutively repeating 2–6 base-pair segments. Microsatellites vary greatly between individuals due to their high mutation rate. Structural variation denotes types of genetic variation typically >1 kb in size. Copy number variations (CNVs) are large variations in the copy number of segments of DNA, and can include insertions, deletions and duplications of specific regions. Translocations and inversions are changes in position and orientation of chromosomal segments, respectively. These can be related to disease when genes are interrupted at the break sites (either end) of the segments. Low copy repeats (LCRs), also called segmental duplications, are segments of DNA which occur in two or more copies with sequence similarity of >90% in a haploid genome. B is a schematic showing how LCRs can cause non-allelic recombination events resulting in CNVs. Non-allelic recombination is not the only way CNVs are generated, but it is an important mechanism in which disease-causing de novo mutations can occur.

Figure 1.2

A schematic of DNA variation. A depicts the different types of DNA variation. Single nucleotide polymorphisms (SNPs) are the most common type of variation, consisting of the substitution of a single nucleotide for another. Single or small numbers of nucleotide insertions and deletions also occur. Microsatellites are very common variations in the human genome, consisting of varying numbers of consecutively repeating 2–6 base-pair segments. Microsatellites vary greatly between individuals due to their high mutation rate. Structural variation denotes types of genetic variation typically >1 kb in size. Copy number variations (CNVs) are large variations in the copy number of segments of DNA, and can include insertions, deletions and duplications of specific regions. Translocations and inversions are changes in position and orientation of chromosomal segments, respectively. These can be related to disease when genes are interrupted at the break sites (either end) of the segments. Low copy repeats (LCRs), also called segmental duplications, are segments of DNA which occur in two or more copies with sequence similarity of >90% in a haploid genome. B is a schematic showing how LCRs can cause non-allelic recombination events resulting in CNVs. Non-allelic recombination is not the only way CNVs are generated, but it is an important mechanism in which disease-causing de novo mutations can occur.

Close modal

Sequencing remains the gold standard to capture all of the variation in the genome. Next-generation sequencing (NGS) technology has greatly reduced the cost of sequencing and is now standard practice.6,28  NGS sequences millions of DNA fragments in parallel, with bases being identified optically in real time using “sequencing by synthesis” chemistry, greatly reducing time and costs.29–31  Third-generation sequencing and nanopore based technologies are on the horizon; these can sequence single DNA molecules without the need for amplification or cyclic-sequencing steps.32–36  Sequencing is still too expensive for large samples, so microarray technology remains the most used genotyping method in GWASs.37  Modern microarrays can now simultaneously interrogate up to 1 million SNPs, and are capable of detecting CNVs and microsatellites; however, inversions and translocations can only be detected by comparison of fully sequenced genomes.38–40  Only a fraction of SNPs can be interrogated on a microarray; however, un-interrogated SNPs can be mathematically predicted from reference genome data by imputation, greatly increasing coverage.41–46  High coverage is crucial for detecting disease variants as it is unlikely that the variants on an array are causal; rather, they are in linkage disequilibrium with true causal variants. Cheaper sequencing technologies, improved arrays, and better reference information for imputation will continue to increase our ability to find disease-associated variants.

Study design can greatly affect the ability to find genotype–phenotype associations. There are two major study designs used in human genetics: case–control and pedigree-based. Simpler case–control studies are better for finding associations with low effect size, but cannot discriminate between inherited and de novo variations.47–49  More complicated family-based designs can be used to evaluate linkage (co-segregation of genotypes and phenotypes from parents to offspring), test for associations, and identify de novo variants.49,50  Subject choice is important as families with a history of disease (multiplex pedigrees) may be enriched for rare causal variants, whereas affected subjects whose families have no history of disease (simplex pedigrees) may be enriched for de novo variants. It is also important to consider how data are analyzed. False discovery rate procedures to correct for multiple testing, test-replication designs, and pathway analysis for enrichment of functionally-related genes are all clever ways to increase statistical power without relying on massive sample sizes.49–53  Carefully considered study designs combined with constantly improving technologies are already generating results in the search for causal variants for schizophrenia, and we can expect continued progress in schizophrenia genetics.

Even in the late 2000s there was a worry that genome-wide screens were finding no true causal variants for schizophrenia.54,55  While early linkage studies were beginning to find significant loci, many of the most interesting findings were not replicated, and candidate genes tested from significant loci yielded no associations.56–59  Past GWASs yielded few strong results due to lack of power;55,60,61  however, newer GWASs and mega-analyses with combined sample sizes in the tens of thousands are now finding numerous significant associations.17,60,62,63  Furthermore, improving genotyping technology and analysis techniques are making it possible to determine the role of rare structural variation and de novo mutations in schizophrenia, and facilitate the identification of rare associated CNVs.64–67  Many schizophrenia risk variants are beginning to show biological relevance and potential as drug targets. There are now too many associated loci to mention in any adequate detail in this section; however, some of the more interesting results are highlighted.

Common SNPs account for a large amount of the variance in liability for schizophrenia. Using statistical models, it was estimated in 2012 that 23% of the variation in liability for schizophrenia is accounted for by common SNPs.16  Just 1 year later, that estimate had increased to at least 32%, and this number should continue to climb as better-powered studies discover more significant associations.17  A few of the more robust and interesting GWAS findings are summarized in Table 1.1. Some of the more interesting themes arising from genetic studies in terms of drug discovery are detailed below.

Table 1.1

Genome-wide association study (GWAS) findings for schizophreniaa

Candidate geneIndex SNPAllelesFreq.Odds ratiop-valueFunction/relevanceRef.
HLA-DRB9 rs114002140 A/G 0.76 1.17 9.1 × 10−14 MHC class II protein *many other genes in LD 17  
C10orf32-AS3MT rs7085104 A/G 0.65 1.11 3.7 × 10−13 Read-through transcript. Associated with blood pressure, CAD, and aneurysm 17  
MAD1L1 rs6461049 T/C 0.57 1.11 5.9 × 10−13 Mitotic spindle-assembly checkpoint component 17  
MIR137 rs1198588 A/T 0.21 0.89 1.7 × 10−12 MicroRNA. rs1198588 is in LD with DPYD, which is associated with mental retardation 17  
rs1625579 T/G 0.80 1.12 1.6 × 10−11 63  
CACNA1C rs1006737 A/G 0.33 1.10 5.2 × 10−12 Voltage gated Ca2+ channel subunit. Associated with ASD, BPD, Timothy syndrome and Brugada syndrome 17  
CACNB2 rs17691888 A/G 0.11 0.86 1.3 × 10−10 Voltage gated Ca2+ channel subunit. Associated with Brugada syndrome and blood pressure 17  
TSNARE1 rs4129585 A/C 0.44 1.09 2.2 × 10−10 SNARE binding and SNAP receptor activity 17  
Intergenic rs10789369 A/G 0.38 1.10 3.6 × 10−10 Unknown. In LD with lincRNA 17  
Intergenic rs7940866 A/T 0.51 0.92 1.8 × 10−9 Unknown. In LD with lincRNA and eQTL for SNX19 17  
QPCT rs2373000 T/C 0.40 1.09 6.8 × 10−9 Human pituitary glutaminyl cyclase 17  
SLCO6A1 rs6878284 T/C 0.64 0.92 9.0 × 10−9 Member of the solute carrier organic anion transporter family 17  
ITH3-ITH4 rs2239547   1.12 7.8 × 10−9 Inter-alpha-trypsin inhibitors. Associated with BPD 63  
ZEB2 rs12991836 A/C 0.65 0.92 1.2 × 10−8 Zinc-finger binding transcriptional repressor. Associated with Mowat–Wilson syndrome and mental retardation 17  
AKT3 rs14403 T/C 0.23 0.91 1.8 × 10−8 Serene/threonine protein kinase. Associated with BPD 17  
C12orf65 rs11532322 A/G 0.32 1.09 2.3 × 10−8 Mitochondrial matrix protein. Associated with mental retardation 17  
SDCCAG8 rs1538774 C/G 0.26 0.92 2.5 × 10−8 Centrosome associated protein 17  
VRK2 rs2312147 C/T 0.61 1.09 1.9 × 10−9 Serene/threonine kinase 249  
ZNF804A rs1344706 G/T 0.41 1.10 2.5 × 10−11 Zinc-finger containing protein. Associated with BPD 250  
PCGEM1 rs17662626 A/G 0.91 1.20 4.6 × 10−8 lincRNA. Associated with prostate cancer 63  
MMP16 rs7004635 G/A 0.18 1.10 2.7 × 10−8 Matrix metalloproteinase. Associated with encephalomyelitis and osteochondrosis 63  
CSMD1 rs10503253 A/C 0.19 1.11 4.1 × 10−8 Complement control protein. Associated with epilepsy 63  
CNNM2 rs7914558 G/A 0.59 1.10 1.8 × 10−9 Cyclin M2. Important in Mg2+ homeostasis 63  
NT5C2 rs11191580 T/C 0.91 1.15 1.1 × 10−8 Hydrolase involved in purine metabolism 63  
NRGN rs12807809 A/G 0.87 1.12 2.8 × 10−9 Neurogranin, PKC substrate. Associated with Jacobsen syndrome and paraneoplastic cerebellar degeneration 249  
CCDC68 rs12966547 G/A 0.58 1.09 2.6 × 10−10 Coiled-coil containing protein 63  
TCF4 rs9960767 A/G 0.58 1.20 4.2 × 10−9 Transcription factor. Associated with Pitt–Hopkins syndrome and Fuchs’ endothelial dystrophy 249  
Candidate geneIndex SNPAllelesFreq.Odds ratiop-valueFunction/relevanceRef.
HLA-DRB9 rs114002140 A/G 0.76 1.17 9.1 × 10−14 MHC class II protein *many other genes in LD 17  
C10orf32-AS3MT rs7085104 A/G 0.65 1.11 3.7 × 10−13 Read-through transcript. Associated with blood pressure, CAD, and aneurysm 17  
MAD1L1 rs6461049 T/C 0.57 1.11 5.9 × 10−13 Mitotic spindle-assembly checkpoint component 17  
MIR137 rs1198588 A/T 0.21 0.89 1.7 × 10−12 MicroRNA. rs1198588 is in LD with DPYD, which is associated with mental retardation 17  
rs1625579 T/G 0.80 1.12 1.6 × 10−11 63  
CACNA1C rs1006737 A/G 0.33 1.10 5.2 × 10−12 Voltage gated Ca2+ channel subunit. Associated with ASD, BPD, Timothy syndrome and Brugada syndrome 17  
CACNB2 rs17691888 A/G 0.11 0.86 1.3 × 10−10 Voltage gated Ca2+ channel subunit. Associated with Brugada syndrome and blood pressure 17  
TSNARE1 rs4129585 A/C 0.44 1.09 2.2 × 10−10 SNARE binding and SNAP receptor activity 17  
Intergenic rs10789369 A/G 0.38 1.10 3.6 × 10−10 Unknown. In LD with lincRNA 17  
Intergenic rs7940866 A/T 0.51 0.92 1.8 × 10−9 Unknown. In LD with lincRNA and eQTL for SNX19 17  
QPCT rs2373000 T/C 0.40 1.09 6.8 × 10−9 Human pituitary glutaminyl cyclase 17  
SLCO6A1 rs6878284 T/C 0.64 0.92 9.0 × 10−9 Member of the solute carrier organic anion transporter family 17  
ITH3-ITH4 rs2239547   1.12 7.8 × 10−9 Inter-alpha-trypsin inhibitors. Associated with BPD 63  
ZEB2 rs12991836 A/C 0.65 0.92 1.2 × 10−8 Zinc-finger binding transcriptional repressor. Associated with Mowat–Wilson syndrome and mental retardation 17  
AKT3 rs14403 T/C 0.23 0.91 1.8 × 10−8 Serene/threonine protein kinase. Associated with BPD 17  
C12orf65 rs11532322 A/G 0.32 1.09 2.3 × 10−8 Mitochondrial matrix protein. Associated with mental retardation 17  
SDCCAG8 rs1538774 C/G 0.26 0.92 2.5 × 10−8 Centrosome associated protein 17  
VRK2 rs2312147 C/T 0.61 1.09 1.9 × 10−9 Serene/threonine kinase 249  
ZNF804A rs1344706 G/T 0.41 1.10 2.5 × 10−11 Zinc-finger containing protein. Associated with BPD 250  
PCGEM1 rs17662626 A/G 0.91 1.20 4.6 × 10−8 lincRNA. Associated with prostate cancer 63  
MMP16 rs7004635 G/A 0.18 1.10 2.7 × 10−8 Matrix metalloproteinase. Associated with encephalomyelitis and osteochondrosis 63  
CSMD1 rs10503253 A/C 0.19 1.11 4.1 × 10−8 Complement control protein. Associated with epilepsy 63  
CNNM2 rs7914558 G/A 0.59 1.10 1.8 × 10−9 Cyclin M2. Important in Mg2+ homeostasis 63  
NT5C2 rs11191580 T/C 0.91 1.15 1.1 × 10−8 Hydrolase involved in purine metabolism 63  
NRGN rs12807809 A/G 0.87 1.12 2.8 × 10−9 Neurogranin, PKC substrate. Associated with Jacobsen syndrome and paraneoplastic cerebellar degeneration 249  
CCDC68 rs12966547 G/A 0.58 1.09 2.6 × 10−10 Coiled-coil containing protein 63  
TCF4 rs9960767 A/G 0.58 1.20 4.2 × 10−9 Transcription factor. Associated with Pitt–Hopkins syndrome and Fuchs’ endothelial dystrophy 249  
a

Strong results from most recent GWASs. For simplicity, only one major histocompatibility complex (MHC) association is shown. Functions are from the GeneCards summary database (www.genecards.org). ASD: autism spectrum disorder; BPD: bipolar disorder; CAD: coronary artery disease; freq.: frequency; LD: linkage disequilibrium; PKC: protein kinase C; SNP: single nucleotide polymorphism.

Receptors represent obvious potential therapeutic targets. The DRD1 gene encoding the D1 dopamine receptor gained strong epidemiologic credibility from early genetic studies.60  While implicating the dopamine system was not a new finding, this is an example showing that genetic studies were corroborating established hypotheses. Common SNPs in the receptor genes CHRNA7 and GRM3 were also associated with schizophrenia, but, as was typical with early candidate gene studies, many studies also reported no associations.60,68  Nevertheless, concordant evidence supported a role for these receptors.69,70 CHRNA7 encodes a subunit of the ionotropic α-7 nicotinic acetylcholine receptor (nAChR). This receptor seems to function mainly to modulate neurotransmitter release in the striatum.71,72  There is evidence that α-7 nAChR agonists have efficacy in improving cognitive deficits in schizophrenia, and may be useful in combination with antipsychotics.73–76  Additionally, rare variants in CHRNA7 show strong associations with schizophrenia.69,77 GRM3 encodes the mGluR3 subunit of the metabotropic glutamate receptor (mGluR). Allosteric and orthosteric modulators of mGluR2/3 are available,78,79  and evidence from animals and early clinical trials is beginning to show that some of these agonists may have efficacy in treating the positive and negative symptoms of schizophrenia.70,80–83  These examples show how genetic research with concordant biological evidence allows us to tap new sources with therapeutic potential.

Associations within an exceptionally complex genomic region on chromosome 6 known as the major histocompatibility complex (MHC) are some of the most robust and consistent findings for schizophrenia.17,18,63,84–86  This region contains hundreds of genes in high linkage disequilibrium, thus making it difficult to identify specific genes underlying associated loci.49,87,88  Nevertheless, examining the general role of the MHC in immune function, autoimmunity, inflammation, and infection in relation to schizophrenia suggests intriguing new directions in schizophrenia research.89  Animal and in vitro studies are revealing a role for MHC molecules in neurodevelopment, neuronal and synaptic plasticity, learning, memory, and behavior.90–94  Furthermore, MHC molecule expression is altered in schizophrenia, and risk loci within the MHC have been associated with functional effects on brain morphology and cognition in humans.95–100  MHC associated autoimmune disorders, infections with certain pathogenic microbes, and prenatal maternal immune activation have been associated with increased schizophrenia risk;101–111  in addition, neuroinflammation and increased inflammatory markers are seen in patients with the disorder.112–120  Systematic reviews and meta-analyses show that anti-inflammatory drugs given in combination with antipsychotics decrease the severity of schizophrenia symptoms.121–123  A complete review of the intricate relationship between the immune system and the central nervous system as it relates to the MHC and schizophrenia is beyond the scope of this chapter; however, it is clear that associations in the MHC can inform our understanding. Additionally, it is likely that therapeutic strategies involving the immune system will improve the treatment of schizophrenia.

Genetic studies have implicated a number of protein kinases in schizophrenia. Associated SNPs in AKT1 were found in diverse populations with few negative reports,124–131  and a strong association was recently found in AKT3.17  The encoded protein AKT, also called protein kinase B, is activated downstream of glutamate signaling in neurons, and mediates phosphoinositide (PI)3 kinase-derived signaling.132,133  Additionally, AKT is upstream of glycogen synthase kinase (GSK)3β, which mediates its effects. SNPs in TAOK2 and MAP2K7 have also been associated with schizophrenia.134,135  Thousand-and-one-amino acid 2 kinase (TAOK2) regulates cortical neuronal morphology.136  Mitogen activated protein kinase kinase (MAP2K)7 regulates axon development in the cortex, and knocking out MAP2K7 in mice results in schizophrenia-like behavioral deficits.135,137  Furthermore, TAOK2 and MAP2K7 are both involved in the c-Jun N-terminal kinase (JNK) signaling pathway, suggesting a role for this pathway in schizophrenia.137–139  Lastly, linkage regions 8p21–12 and 2q33.3–34, as well as SNP and microsatellite variants in ERBB4 and NRG1, have been associated with schizophrenia.56,57,60,140,141  The encoded protein neuregulin (NRG)1 activates receptor tyrosine-protein kinase erbB-4 (ERBB4) to initiate downstream signaling involving JNK, extracellular signal-regulated kinase (ERK) and PI3 kinase pathways. NRG1 is involved in neurodevelopment, and NRG1/ERBB4 signaling is implicated in glutamatergic, γ-aminobutyric acid (GABA)ergic and dopaminergic neurotransmission.142  NRG1 and ERBB4 function in relation to schizophrenia has been extensively studied in mouse models.143  Rare variants in TAOK2 and ERBB4 have also been associated with schizophrenia.67,144–149  Each of these kinases, and their related pathways, is an excellent potential target for therapeutic intervention. The role of these kinases in schizophrenia will be elucidated with further research.

One of the newest findings from GWASs implicates genes encoding l-type calcium channel subunits CACNA1C and CACNB2 in schizophrenia. These channels play a role in learning, memory, and synaptic plasticity, and have also been associated with autism, bipolar disorder, and the calcium channelopathies Brugada and Timothy syndromes.150–156  Many approved medications act on calcium channels; for example, some antipsychotics (e.g., pimozide) and adjuvants for non-responders in schizophrenia and bipolar disorder (e.g., verapamil and nifedipine).157,158  Hence, these associations not only suggest potential mechanisms for the etiology and pathophysiology of many neuropsychiatric disorders, but also provide hypotheses for quick clinical translation through the repurposing of approved medications.

One of the strongest recent associations is the MIR137 gene coding the microRNA miR-137. This is particularly notable as miR-137 functions to regulate multiple genes by binding target sites present on mRNA.159  It is highly expressed in the brain, and is an important regulator of neurogenesis and neuronal maturation.160–163  Genes with predicted miR-137 binding sites were enriched for lower p-values;17  furthermore, many predicted and confirmed miR-137-regulated targets reached genome-wide significance, including HLA-DQA1, CACNA1C, CACNB2, ZEB2, CSMD1, MAD1L1, DPYD, TCF4, and many others.17,63,164,165  Hence, miR-137 stands at the top of multiple potential schizophrenia-associated pathways. In addition to miR137, multiple regions containing long intergenic non-coding RNAs (lincRNAs) recently reached genome-wide significance.17  The function of these lincRNAs is not well understood, but they may have roles in epigenetic regulation and development.166  These findings provide a myriad exciting new research directions to understand schizophrenia and find new therapeutic targets.

Many rare but potent structural variants have been discovered to have a role in a small proportion of schizophrenia cases; however, these variants tend to be non-specific and associate with multiple disorders, such as bipolar disorder, autism, intellectual disability, epilepsy, and others.49  Finding associated rare variants presents a unique set of challenges in genetic research. Technological advances have driven much of the search for rare structural variants.39,40,64  With decreasing sequencing costs, and new microarrays capable of detecting CNVs, searching for structural variants in large epidemiological studies is becoming more feasible. Table 1.2 provides a summary of some of the structural variations associated with schizophrenia, most likely representing the “low-hanging fruit” of rare variations. These tend to be large, centering on structural variation hotspots.167  Many of these variants span multiple genes, so further research is needed to narrow the focus and understand their functional roles in disease. Nevertheless, some more specific directions have emerged from the study of rare variation. More rare variations will be found as new technology for detecting structural variation is applied to ever larger samples.

Table 1.2

Structural variation associated with schizophreniaa

Structural variantLocation (Mb)GenesTypeFrequency in casesFrequency in controlsOdds ratiop-valueOther associationsRef.
1q21.1 chr1: 145.0–148.0 34 Deletion 0.0018 0.0002 9.5 8 × 10−4 Developmental delay, intellectual disability, micro and macrocephaly, dysmorphia, epilepsy, cataracts, cardiac defects, possibly ASD185, thrombocytopenia–absent radius syndrome 147  
Duplication 0.0013 0.0004 4.5 0.02 147  
2p16.3 chr2: 50.1–51.2 NRXN1exons Deletion 0.0018 0.0002 7.5 1 × 10−6 Developmental delay, intellectual disability, epilepsy, ASD, Pitt–Hopkins-like syndrome 2 147  
3q29 chr3: 195.7–197.3 19 Deletion 0.0010 0.0 3.8 4 × 10−4 Developmental delay, intellectual disability, possibly ASD 147  
7q36.3 chr7: 158.8–158.9 VIPR2 Duplication 0.0024 0.0001 16.4 4 × 10−5  196, 147  
15q13.3 chr15 : 30.9–33.5 12 Deletion 0.0019 0.0002 12.1 7 × 10−7 Developmental delay, intellectual disability, epilepsy, ASD, ADHD 147  
16p11.2 chr16 : 29.5–30.2 29 Duplication 0.0031 0.0003 9.5 3 × 10−8 ASD 147  
17q12 chr17 : 34.8–36.2 18 Deletion 0.0006 0.0 4.49 3 × 10−4 ASD 192  
22q11.21 chr22 : 18.7–21.8 53 Deletion 0.0031 0.0 20.3 7 × 10−13 Developmental delay, intellectual disability, velocardiofacial–DiGeorge syndrome 147  
Structural variantLocation (Mb)GenesTypeFrequency in casesFrequency in controlsOdds ratiop-valueOther associationsRef.
1q21.1 chr1: 145.0–148.0 34 Deletion 0.0018 0.0002 9.5 8 × 10−4 Developmental delay, intellectual disability, micro and macrocephaly, dysmorphia, epilepsy, cataracts, cardiac defects, possibly ASD185, thrombocytopenia–absent radius syndrome 147  
Duplication 0.0013 0.0004 4.5 0.02 147  
2p16.3 chr2: 50.1–51.2 NRXN1exons Deletion 0.0018 0.0002 7.5 1 × 10−6 Developmental delay, intellectual disability, epilepsy, ASD, Pitt–Hopkins-like syndrome 2 147  
3q29 chr3: 195.7–197.3 19 Deletion 0.0010 0.0 3.8 4 × 10−4 Developmental delay, intellectual disability, possibly ASD 147  
7q36.3 chr7: 158.8–158.9 VIPR2 Duplication 0.0024 0.0001 16.4 4 × 10−5  196, 147  
15q13.3 chr15 : 30.9–33.5 12 Deletion 0.0019 0.0002 12.1 7 × 10−7 Developmental delay, intellectual disability, epilepsy, ASD, ADHD 147  
16p11.2 chr16 : 29.5–30.2 29 Duplication 0.0031 0.0003 9.5 3 × 10−8 ASD 147  
17q12 chr17 : 34.8–36.2 18 Deletion 0.0006 0.0 4.49 3 × 10−4 ASD 192  
22q11.21 chr22 : 18.7–21.8 53 Deletion 0.0031 0.0 20.3 7 × 10−13 Developmental delay, intellectual disability, velocardiofacial–DiGeorge syndrome 147  
a

Citations refer to the most comprehensive study rather than the initial report. “Genes” refers to the number from the University of California Santa Cruz (UCSC) Known Genes data set. ADHD: attention-deficit hyperactivity disorder; ASD: autism spectrum disorder. Table is adapted by permission from Macmillan Publishers Ltd: Nature Reviews Genetics,20  copyright (2012).

DISC1 was discovered at the breakpoint of a chromosomal translocation (t1q42.1; 11q14.3) in a Scottish pedigree which presents with severe psychiatric disorders, including schizophrenia, depression, and bipolar disorder.168,169  While this translocation was not found outside this family, additional associations with common and rare variants in DISC1 were found.60,170–173 DISC1 encodes a multifunctional scaffolding protein involved in regulating embryonic and adult neurogenesis, and neuronal proliferation, differentiation and migration.170,174–176  Disrupting DISC1 in animal models causes schizophrenia-like behavioral deficits.177–180  Indeed, converging evidence from genetics and functional studies strongly supports a role for DISC1 in schizophrenia.176  DISC1 interacts with many potential target proteins that are involved in synaptic function, and neurodevelopmental, cytoskeletal, and centrosomal pathways, some of which are also associated with schizophrenia (e.g., AKT, DPYSL2, GSK3β, PDE4, and TNIK).173,181–186  While DISC1 itself is not the easiest target for therapeutics, it is an example of hypothesis generation from genetic research greatly contributing to our understanding of schizophrenia.

Rare CNVs in NRXN1, including a de novo instance, have been associated with schizophrenia.67,77,187–190  CNVs in NRXN1 are also associated with autism.191,192 NRXN1 encodes members of the neurexin superfamily of proteins, which are presynaptic cell adhesion molecules which form heterotypic intercellular junctions with neurologin across synapses.193 NRXN1 is one of the largest known human genes, and is regulated through alternative splicing at its six splice sites yielding numerous isoforms, each with unique binding affinities. Neurexins are thought to be involved in synapse and neuronal maturation and have been implicated in neurodevelopmental pathways.194,195  Furthermore, neurexins possess an intracellular PDZ domain which can interact with many presynaptic proteins.194  The potential role of NRXN1 in schizophrenia remains to be elucidated; hence, NRXN1 represents an interesting future direction in schizophrenia research.

Duplications in the VIPR2 locus at 7q36.2 are strongly associated with schizophrenia,77,196  suggesting changes in gene dosage may affect the disorder. Low copy repeats at the VIPR2 gene may predispose it to structural variations (see Figure 1.2).197 VIPR2 encodes the type II vasoactive intestinal peptide G-protein coupled receptor (also called VPAC2), which is coupled to adenylate cyclase activity and expressed in the cerebral cortex and thalamus.198  Changes in gene dosage causing alterations in VIPR2 signaling could hypothetically be associated with schizophrenia etiology or symptoms; hence, VIPR2 represents a good potential target for therapeutics. Future research into VIPR2 gene and protein function will reveal its relationship to schizophrenia.

Sequencing allows researchers to analyze the genome to a level of detail that is otherwise unattainable; however, high costs continue to limit the size of sequencing studies.199  While insufficient statistical power is still precluding the ability to detect significant loci in these studies, clever analysis techniques are revealing interesting trends for rare variation. Evaluating the burden of structural variation in cases compared to controls tests a multigenic hypothesis in which many rare but different disruptions contribute to disease risk. Multiple studies report an increased burden of CNVs in schizophrenia.67,200–202  Additionally, a role for de novo mutations in schizophrenia has been reported in a number of studies.200,203–207  While the evidence for increased rates of de novo variation is mixed, de novo variants disproportionately disrupt genes in schizophrenia populations, suggesting a functional role. Pathway analysis has been used to great effect in schizophrenia sequencing studies.67,148,208  Genes within rare variants are significantly enriched in functionally-related gene sets, mostly composed of synaptic proteins; specifically, the voltage gated calcium ion channel, genes within the activity-regulated cytoskeleton-associated (ARC) protein signaling complex, N-methyl-d-aspartate (NMDA) receptor complexes, and glutamatergic postsynaptic proteins.201,203  A caveat of pathway analysis is that there are many potential biases that result from incomplete data sets, differences in gene size, or multiple pathway membership.20,52,53,209  Nevertheless, the results for schizophrenia appear to be etiologically plausible. The future of sequencing in genetic studies looks promising; however, caution should be taken as handling the massive amounts of data from fully sequenced genomes presents challenges for statistical analysis. The falling cost of sequencing will allow these technologies to be applied to the large samples needed to detect specific variants.

Moving forward with studies interrogating the genome for schizophrenia-associated risk variants, a number of important concepts have emerged. The lack of results from early studies was primarily due to a lack of statistical power, and increasing sample size is the easiest remedy for this problem.16,17,21,55  Working out the logistics to handle samples in the tens of thousands and beyond will be the challenge for future researchers. Evidence suggests that heterogeneity across diverse groups may be low for schizophrenia;210,211  hence, planned mega-analyses across world populations may be worth pursuing.20  As sample size increases, the number of loci reaching genome-wide significance will climb. In addition, it is important to understand that many associated loci may not be truly causal, but simply in linkage disequilibrium with causal variants. Improved microarrays and reference data for imputation, as well as cheaper sequencing technologies will improve our ability to find true causal loci, especially rare variants that are less likely to be included on commercial microarrays.6  Analysis techniques are also improving. The increasing body of gene function literature, improved categorization and annotation of functions, and better algorithms will increase the utility of pathway analysis as a legitimate tool for supporting hypotheses and corroborating evidence of associations.212  Interestingly, many schizophrenia-associated loci are also implicated in other disorders, such as autism spectrum disorders and bipolar disorder.20,213  Furthermore, schizophrenia associations are enriched in functionally annotated genes.214  While complicating the picture for schizophrenia genetics, this information can be used beneficially to estimate the false discovery rate and improve power using purely statistical methods.212,215,216  These analysis techniques can be applied to existing data sets as well as new studies to find associations that were previously hidden by statistical noise. Increasing sample size, improving technology and statistical techniques, and careful study design will facilitate the search for schizophrenia risk variants in the future.

Long-held distinctions in psychiatric nosology and diagnostic manuals have attempted to separate psychiatric illness into defined categories having discrete boundaries.217,218  Yet the diagnostic taxonomy of schizophrenia has always necessitated the use of multidimensional criteria, as many core symptoms transcend the boundaries of multiple disorders.219–223  The picture emerging from genetic studies suggests that a paradigm shift may be needed, moving away from discrete classifications. Certainly, one of the recurrent themes from Section 1.3 is the non-specific nature of associated loci. Many of the rare variants in Table 1.2 are associated with developmental disorders, intellectual disability, and autism. Furthermore, multiple schizophrenia-associated SNPs show cross-disorder associations with autism spectrum disorder, attention-deficit hyperactivity disorder, bipolar disorder, and major depressive disorder.224  For example, SNPs in CACNA1C, ZNF804A, ITH3-ITH4, and ANK3 were also associated with bipolar disorder.18,20,213 

Phenomena such as epistasis, variable expressivity, pleiotropy, or gene–environment interactions could explain how different disease states arise from individual genetic variants. It could be the case that these variants are mediating the same symptoms in different disorders, and are susceptible to effects such as epistasis and environmental interactions which modify the severity of their presentation. Hence, rather than approaching schizophrenia as a unified disorder, it may be beneficial from a gene discovery perspective to focus on individual symptom domains that are likely to be more proximal to the underlying neural substrates, and therefore genes, than the disorder as a whole.

Segregating analysis by symptom domains is related to the idea of stratifying genetic analysis based on endophenotypes. Endophenotypes can be defined as a subset of biomarkers which are heritable and increase the risk of an illness.225,226  These can be any type of trait; for example, neuroimaging, electrophysiological, and cognitive variables are all considered endophenotypes for schizophrenia.227–232  There are a number of advantages to using endophenotypes: they are simpler and closer to the gene level of action, so associated variants are more likely to show larger effect sizes; they allow for easier stratification of populations and quantitative ranking within a diagnostic category to increase statistical power by decreasing heterogeneity; and they are more easily translatable to animal models, so it is easier to perform functional studies of genes.233 

Understanding individual symptom domains or endophenotypes also has consequences for drug development.234  Many schizophrenia risk variants, particularly rare variants, affect neurodevelopmental pathways that affect brain structure.20,231,235  Unless intervention occurs pre-emptively during development, medications are unlikely to be useful in these pathways if the changes in brain structure underlie schizophrenia symptoms. Conversely, much of the functional disability associated with schizophrenia is due to cognitive impairment.236–238  Therefore, understanding the genetic and molecular underpinnings of cognitive symptoms is important for developing therapeutics that will vastly improve the ability of schizophrenic patients to function.239,240  While overlap is almost guaranteed between domains such as brain structure and cognitive impairment, consideration of factors that affect one but not the other is important for informing efforts into drug discovery. Endophenotypes are already a useful tool for functional analysis of schizophrenia risk variants.95,230,231,241,242  The use of endophenotypes or symptom domains to refine future GWAS analyses will aid the search for new risk variants and facilitate our understanding of the genetic mechanisms underlying schizophrenia.

Genetics is an excellent tool for directing research to improve our understanding of schizophrenia. The emerging story from genetics has moved schizophrenia research in interesting new directions. It has also forced us to abandon some of our past expectations. A longstanding issue in schizophrenia is the reliance on clinical phenomenology for diagnosis.243  Genetic research was expected to be a source of biologically valid markers to improve diagnosis. Sadly, the picture from genetic research shows that this hope may go unfulfilled. The genetic architecture of schizophrenia, consisting of thousands of low effect variants and variants demonstrating pleiotropy for other illnesses, demonstrates that genetic variants are, so far, unlikely to be useful as diagnostic tools.24 

While great progress has been made in accounting for the “missing” heritability in schizophrenia, it should be noted that some of the predicted 81% may remain missing. Gene–environment interactions tend to be attributed to heritability in epidemiological studies.244  MZ twins, sharing nearly 100% of their genes, have a concordance of ∼50%, emphasizing the importance of environmental input. Furthermore, unusual genomic effects, such as over-dominance,245  and epigenetic factors have been implicated in contributing to the heritability of schizophrenia.246–248  Gene–environment interactions can be incorporated into genetic research with careful phenotyping, and would greatly improve our understanding of schizophrenia risk.243  However, as it stands, the environment is largely ignored. Finally, it should be emphasized that genetics, above all, is a tool for hypothesis generation. Barring unusually strong Mendelian associations, the results of genetic research give probabilistic associations of varying credibility. Many strongly associated variants do not fall within genes; rather, they are located in intergenic regions or within introns, and have unknown functional relevance.17,60,62,63  False positives are always a danger, but rigorous avoidance of potential false positives can also eliminate evidence of the most interesting results.20,50,51  It is important to use discretion when moving forward with results, and as with all science, multiple lines of convergent evidence are desirable.

The use of genetic information for drug discovery is still in its early development. Progress in schizophrenia research was slow early in the past decade, but we are now finally approaching sufficient sample sizes to accelerate the discovery of risk variants. Genetic discoveries have associated a plethora of genes with schizophrenia, and highlighted the complex, heterogeneous nature of the disorder. Further research to replicate important findings and functionally characterize risk genes is important to understand the underlying processes involved in schizophrenia. Validation of variants and a functional understanding of how specific mutations lead to the development and presentation of the disorder are essential for novel drug discovery.

While there is no risk variant yet discovered that has an effect on a significant number of schizophrenia patients, the major discoveries so far appear to converge on clinically relevant pathways. These findings have advanced our understanding of the etiology and pathophysiology of schizophrenia. Given the large overlap between risk variants for schizophrenia and other psychiatric disorders, priority should be directed to pathways which underlie specific symptom domains that cross current diagnostic categories. Genetic research will continue to find new associated variants and suggest new directions for understanding schizophrenia. The challenge for future researchers will be to weave together the intricate picture from genes to proteins to pathways, and finally to the generation of novel therapeutics.

Coverage: the estimated proportion of the genome that can be captured by SNPs interrogated on an array at a preset correlation threshold.

de novo variant: a causal variant that is the result of a mutation occurring for the first time within a subject; i.e., it was not inherited.

Epistasis: when the effects of one gene depend on one or more additional modifier genes (i.e., the genetic background).

Gene–environment interaction: when one gene exerts differential effects on a phenotype when exposed to different environments.

Odds ratio (OR): the ratio of the probability of an event occurring given exposure over the probability of an event occurring given no exposure. Exposure can be to anything; however, in genetic studies it usually refers to the presence of a certain variant. The OR in the context of genetics is also called the genotypic relative risk.

Over-dominance: a genetic condition in which the phenotype of the heterozygote lies outside the phenotypic range of the homozygotes at any allele.

Pleiotropy: when one gene exerts effects on multiple apparently unrelated phenotypes.

Population prevalence rate: the proportion of a population with a given trait over a given time.

Statistical power: the probability that a statistical test will reject the null hypothesis when the alternative hypothesis is true; i.e., the probability of not committing a type II error. Effectively, it is a measure of the ability of a study to find true significant results.

Variable expressivity: when individuals with the same genotype express a phenotype to a different degree from each other.

1.
Sanger
 
F.
Nicklen
 
S.
Coulson
 
A. R.
Proc. Natl. Acad. Sci. U. S. A.
1977
, vol. 
74
 pg. 
5463
 
2.
Cooper
 
D. N.
Chen
 
J. M.
Ball
 
E. V.
et al.
Hum. Mutat.
2010
, vol. 
31
 pg. 
631
 
3.
Stenson
 
P. D.
Ball
 
E. V.
Mort
 
M.
et al.
Hum. Mutat.
2003
, vol. 
21
 pg. 
577
 
4.
Urban
 
T. J.
Goldstein
 
D. B.
Sci. Transl. Med.
2014
, vol. 
6
 pg. 
220ps1
 
5.
Xu
 
Q.
Wu
 
X.
Xiong
 
Y.
Xing
 
Q.
He
 
L.
Qin
 
S.
Front. Med.
2013
, vol. 
7
 pg. 
180
 
6.
Naidoo
 
N.
Pawitan
 
Y.
Soong
 
R.
Cooper
 
D. N.
Ku
 
C. S.
Hum. Genomics
2011
, vol. 
5
 pg. 
577
 
7.
Falconer
 
D. S.
Ann. Hum. Genet.
1965
, vol. 
29
 pg. 
51
 
8.
DeFries
 
J. C.
Fulker
 
D. W.
Behav. Genet.
1985
, vol. 
15
 pg. 
467
 
9.
Gielen
 
M.
Lindsey
 
P. J.
Derom
 
C.
et al.
Behav. Genet.
2008
, vol. 
38
 pg. 
44
 
10.
Cardno
 
A. G.
Gottesman
 
I. I.
Am. J. Med. Genet.
2000
, vol. 
97
 pg. 
12
 
11.
Sullivan
 
P. F.
Kendler
 
K. S.
Neale
 
M. C.
Arch. Gen. Psychiatry
2003
, vol. 
60
 pg. 
1187
 
12.
Lichtenstein
 
P.
Yip
 
B. H.
Bjork
 
C.
et al.
Lancet
2009
, vol. 
373
 pg. 
234
 
13.
I. I.
Gottesman
,
1991
,
Schizophrenia Genesis: The Origins of Madness
,
Freeman
,
New York
, xiii, 296
14.
Wray
 
N. R.
Gottesman
 
I. I.
Front. Genet.
2012
, vol. 
3
 pg. 
118
 
15.
Lee
 
S. H.
Wray
 
N. R.
Goddard
 
M. E.
Visscher
 
P. M.
Am. J. Hum. Genet.
2011
, vol. 
88
 pg. 
294
 
16.
Lee
 
S. H.
DeCandia
 
T. R.
Ripke
 
S.
et al.
Nat. Genet.
2012
, vol. 
44
 pg. 
247
 
17.
Ripke
 
S.
O’Dushlaine
 
C.
Chambert
 
K.
et al.
Nat. Genet.
2013
, vol. 
45
 pg. 
1150
 
18.
International Schizophrenia Consortium
 
Nature
2009
, vol. 
460
 pg. 
748
 
19.
Manolio
 
T. A.
Collins
 
F. S.
Cox
 
N. J.
et al.
Nature
2009
, vol. 
461
 pg. 
747
 
20.
Sullivan
 
P. F.
Daly
 
M. J.
O’Donovan
 
M.
Nat. Rev. Genet.
2012
, vol. 
13
 pg. 
537
 
21.
Kim
 
Y.
Zerwas
 
S.
Trace
 
S. E.
Sullivan
 
P. F.
Schizophr. Bull.
2011
, vol. 
37
 pg. 
456
 
22.
Visscher
 
P. M.
Goddard
 
M. E.
Derks
 
E. M.
Wray
 
N. R.
Mol. Psychiatry
2012
, vol. 
17
 pg. 
474
 
23.
Risch
 
N.
Am. J. Hum. Genet.
1990
, vol. 
46
 pg. 
222
 
24.
Wray
 
N. R.
Visscher
 
P. M.
Schizophr. Bull.
2010
, vol. 
36
 pg. 
14
 
25.
Jones
 
H. B.
Faham
 
M.
Hum. Hered.
2005
, vol. 
59
 pg. 
176
 
26.
Sachidanandam
 
R.
Weissman
 
D.
Schmidt
 
S. C.
et al.
Nature
2001
, vol. 
409
 pg. 
928
 
27.
Sebat
 
J.
Lakshmi
 
B.
Troge
 
J.
et al.
Science
2004
, vol. 
305
 pg. 
525
 
28.
Mardis
 
E. R.
Trends Genet.
2008
, vol. 
24
 pg. 
133
 
29.
Shendure
 
J.
Ji
 
H.
Nat. Biotechnol.
2008
, vol. 
26
 pg. 
1135
 
30.
Mardis
 
E.R.
Annu. Rev. Genomics Hum. Genet.
2008
, vol. 
9
 pg. 
387
 
31.
Metzker
 
M. L.
Nat. Rev. Genet.
2010
, vol. 
11
 pg. 
31
 
32.
Schadt
 
E. E.
Turner
 
S.
Kasarskis
 
A.
Hum. Mol. Genet.
2010
, vol. 
19
 pg. 
R227
 
33.
Korlach
 
J.
Bjornson
 
K. P.
Chaudhuri
 
B. P.
et al.
Methods Enzymol.
2010
, vol. 
472
 pg. 
431
 
34.
Ying
 
Y.
Zhang
 
J.
Gao
 
R.
Long
 
Y.
Angew. Chem., Int. Ed.
2013
, vol. 
52
 pg. 
13154
 
35.
Fanget
 
A.
Traversi
 
F.
Khlybov
 
S.
et al.
NanoLett.
2014
, vol. 
14
 pg. 
244
 
36.
Branton
 
D.
Deamer
 
D. W.
Marziali
 
A.
et al.
Nat. Biotechnol.
2008
, vol. 
26
 pg. 
1146
 
37.
Ragoussis
 
J.
Annu. Rev. Genomics Hum. Genet.
2009
, vol. 
10
 pg. 
117
 
38.
Cooper
 
G. M.
Zerr
 
T.
Kidd
 
J. M.
Eichler
 
E. E.
Nickerson
 
D. A.
Nat. Genet.
2008
, vol. 
40
 pg. 
1199
 
39.
Scherer
 
S. W.
Lee
 
C.
Birney
 
E.
et al.
Nat. Genet.
2007
, vol. 
39
 pg. 
S7
 
40.
McCarroll
 
S. A.
Kuruvilla
 
F. G.
Korn
 
J. M.
et al.
Nat. Genet.
2008
, vol. 
40
 pg. 
1166
 
41.
Barrett
 
J.
Cardon
 
L.
Nat. Genet.
2006
, vol. 
38
 pg. 
659
 
42.
Marchini
 
J.
Howie
 
B.
Myers
 
S.
McVean
 
G.
Donnelly
 
P.
Nat. Genet.
2007
, vol. 
39
 pg. 
906
 
43.
Eberle
 
M. A.
Ng
 
P. C.
Kuhn
 
K.
et al.
PloS Genet.
2007
, vol. 
3
 pg. 
1827
 
44.
Li
 
Y.
Willer
 
C.
Sanna
 
S.
Abecasis
 
G.
Annu. Rev. Genomics Hum. Genet.
2009
, vol. 
10
 pg. 
387
 
45.
Marchini
 
J.
Howie
 
B.
Nat. Rev. Genet.
2010
, vol. 
11
 pg. 
499
 
46.
Kim
 
J.
Shin
 
M.
Chung
 
M.
Park
 
K.
BioChip J.
2013
, vol. 
7
 pg. 
63
 
47.
de Bakker
 
P. I. W.
Ferreira
 
M. A. R.
Jia
 
X.
Neale
 
B. M.
Raychaudhuri
 
S.
Voight
 
B. F.
Hum. Mol. Genet.
2008
, vol. 
17
 pg. 
R122
 
48.
Price
 
A. L.
Zaitlen
 
N. A.
Reich
 
D.
Patterson
 
N.
Nat. Rev. Genet.
2010
, vol. 
11
 pg. 
459
 
49.
Sullivan
 
P. F.
Daly
 
M. J.
O’Donovan
 
M.
Nat. Rev. Genet.
2012
, vol. 
13
 pg. 
537
 
50.
Dawn Teare
 
M.
Barrett
 
J. H.
Lancet
2005
, vol. 
366
 pg. 
1036
 
51.
Benjamini
 
Y.
Hochberg
 
Y.
J. R. Stat. Soc.
1995
, vol. 
57
 pg. 
289
 
52.
Cantor
 
R. M.
Lange
 
K.
Sinsheimer
 
J. S.
Am. J. Hum. Genet.
2010
, vol. 
86
 pg. 
6
 
53.
Khatri
 
P.
Sirota
 
M.
Butte
 
A. J.
PloS Comput. Biol.
2012
, vol. 
8
 pg. 
e1002375
 
54.
Crow
 
T. J.
Psychol. Med.
2008
, vol. 
38
 pg. 
1681
 
55.
Collier
 
D. A.
Psychol. Med.
2008
, vol. 
38
 pg. 
1687
 
56.
Badner
 
J. A.
Gershon
 
E. S.
Mol. Psychiatry
2002
, vol. 
7
 pg. 
405
 
57.
Lewis
 
C. M.
Levinson
 
D. F.
Wise
 
L. H.
et al.
Am. J. Hum. Genet.
2003
, vol. 
73
 pg. 
34
 
58.
Segurado
 
R.
Detera-Wadleigh
 
S.
Levinson
 
D. F.
et al.
Am. J. Hum. Genet.
2003
, vol. 
73
 pg. 
49
 
59.
Sanders
 
A. R.
Duan
 
J.
Levinson
 
D. F.
et al.
Am. J. Psychiatry
2008
, vol. 
165
 pg. 
497
 
60.
Allen
 
N. C.
Bagade
 
S.
McQueen
 
M. B.
et al.
Nat. Genet.
2008
, vol. 
40
 pg. 
827
 
61.
McCarthy
 
M. I.
Abecasis
 
G. R.
Cardon
 
L. R.
et al.
Nat. Rev. Genet.
2008
, vol. 
9
 pg. 
356
 
62.
Stefansson
 
H.
Ophoff
 
R. A.
Steinberg
 
S.
et al.
Nature
2009
, vol. 
460
 pg. 
744
 
63.
Schizophrenia Psychiatric GWAS Consortium
 
Nat. Genet.
2011
, vol. 
43
 pg. 
969
 
64.
Bassett
 
A. S.
Scherer
 
S. W.
Brzustowicz
 
L. M.
Am. J. Psychiatry
2010
, vol. 
167
 pg. 
899
 
65.
O’Donovan
 
M. C.
Craddock
 
N. J.
Owen
 
M. J.
Hum. Genet.
2009
, vol. 
126
 pg. 
3
 
66.
Tam
 
G. W.
Redon
 
R.
Carter
 
N. P.
Grant
 
S. G.
Biol. Psychiatry
2009
, vol. 
66
 pg. 
1005
 
67.
Walsh
 
T.
McClellan
 
J. M.
McCarthy
 
S. E.
et al.
Science
2008
, vol. 
320
 pg. 
539
 
68.
Harrison
 
P. J.
Lyon
 
L.
Sartorius
 
L. J.
Burnet
 
P. W. J.
Lane
 
T. A.
J. Psychopharmacol.
2008
, vol. 
22
 pg. 
308
 
69.
Stefansson
 
H.
Rujescu
 
D.
Cichon
 
S.
et al.
Nature
2008
, vol. 
455
 pg. 
232
 
70.
Patil
 
S. T.
Zhang
 
L.
Martenyi
 
F.
et al.
Nat. Med.
2007
, vol. 
13
 pg. 
1102
 
71.
Sher
 
E.
Chen
 
Y.
Sharples
 
T. J. W.
et al.
Curr. Top. Med. Chem.
2004
, vol. 
4
 pg. 
283
 
72.
Garcao
 
P.
Oliveira
 
C. R.
Cunha
 
R. A.
Agostinho
 
P.
Neurosci. Lett.
2014
, vol. 
566C
 pg. 
106
 
73.
Wallace
 
T. L.
Porter
 
R. H. P.
Biochem. Pharmacol.
2011
, vol. 
82
 pg. 
891
 
74.
Lendvai
 
B.
Kassai
 
F.
Szájli
 
A.
Némethy
 
Z.
Brain Res. Bull.
2013
, vol. 
93
 pg. 
86
 
75.
Pichat
 
P.
Bergis
 
O. E.
Terranova
 
J.
et al.
Neuropsychopharmacology
2007
, vol. 
32
 pg. 
17
 
76.
Wang
 
D.
Noda
 
Y.
Zhou
 
Y.
Nitta
 
A.
Furukawa
 
H.
Nabeshima
 
T.
Neuropharmacology
2007
, vol. 
53
 pg. 
379
 
77.
Levinson
 
D. F.
Shi
 
J.
Wang
 
K.
et al.
Am. J. Psychiatry
2012
, vol. 
169
 pg. 
963
 
78.
Sheffler
 
D. J.
Pinkerton
 
A. B.
Dahl
 
R.
Markou
 
A.
Cosford
 
N. D.
ACS Chem. Neurosci.
2011
, vol. 
2
 pg. 
382
 
79.
Trabanco
 
A. A.
Cid
 
J. M.
Expert Opin. Ther. Pat.
2013
, vol. 
23
 pg. 
629
 
80.
Wischhof
 
L.
Aho
 
H. E.
Koch
 
M.
Pharmacol. Biochem. Behav.
2012
, vol. 
102
 pg. 
6
 
81.
Hopkins
 
C. R.
ACS Chem. Neurosci.
2013
, vol. 
4
 pg. 
211
 
82.
Fell
 
M. J.
McKinzie
 
D. L.
Monn
 
J. A.
Svensson
 
K. A.
Neuropharmacology
2012
, vol. 
62
 pg. 
1473
 
83.
Ago
 
Y.
Hiramatsu
 
N.
Ishihama
 
T.
et al.
Behav. Pharmacol.
2013
, vol. 
24
 pg. 
74
 
84.
de Jong
 
S.
van Eijk
 
K.R.
Zeegers
 
D. W. L. H.
et al.
Eur. J. Hum. Genet.
2012
, vol. 
20
 pg. 
1004
 
85.
Papiol
 
S.
Malzahn
 
D.
Kästner
 
A.
et al.
Transl. Psychiatry
2011
, vol. 
1
 pg. 
e45
 
86.
Shi
 
J.
Levinson
 
D. F.
Duan
 
J.
et al.
Nature
2009
, vol. 
460
 pg. 
753
 
87.
Traherne
 
J. A.
Int. J. Immunogenet.
2008
, vol. 
35
 pg. 
179
 
88.
Shiina
 
T.
Hosomichi
 
K.
Inoko
 
H.
Kulski
 
J. K.
J. Hum. Genet.
2009
, vol. 
54
 pg. 
15
 
89.
Debnath
 
M.
Cannon
 
D. M.
Venkatasubramanian
 
G.
Prog. Neuropsychopharmacol. Biol. Psychiatry
2013
, vol. 
42
 pg. 
49
 
90.
Boulanger
 
L. M.
Shatz
 
C. J.
Nat. Rev. Neurosci.
2004
, vol. 
5
 pg. 
521
 
91.
Boulanger
 
L. M.
Neuron
2009
, vol. 
64
 pg. 
93
 
92.
Garay
 
P. A.
McAllister
 
A. K.
Front. Synaptic Neurosci.
2010
, vol. 
2
 pg. 
136
 
93.
Sankar
 
A.
MacKenzie
 
R. N.
Foster
 
J. A.
J. Neuroimmunol.
2012
, vol. 
244
 pg. 
8
 
94.
Yirmiya
 
R.
Goshen
 
I.
Brain Behav. Immun.
2011
, vol. 
25
 pg. 
181
 
95.
Walters
 
J. T.
Rujescu
 
D.
Franke
 
B.
et al.
Am. J. Psychiatry
2013
, vol. 
170
 pg. 
877
 
96.
Agartz
 
I.
Brown
 
A. A.
Rimol
 
L. M.
et al.
Biol. Psychiatry
2011
, vol. 
70
 pg. 
696
 
97.
Wassink
 
T. H.
Nopoulos
 
P.
Pietila
 
J.
Crowe
 
R. R.
Andreasen
 
N. C.
Am. J. Med. Genet. B Neuropsychiatr. Genet.
2003
, vol. 
118B
 pg. 
1
 
98.
Mexal
 
S.
Frank
 
M.
Berger
 
R.
et al.
Brain Res.
2005
, vol. 
139
 pg. 
317
 
99.
Kano
 
S.
Nwulia
 
E.
Niwa
 
M.
Chen
 
Y.
Sawa
 
A.
Cascella
 
N.
Neurosci. Res.
2011
, vol. 
71
 pg. 
289
 
100.
Krause
 
D.
Wagner
 
J.
Matz
 
J.
et al.
Neurosci. Res.
2012
, vol. 
72
 pg. 
87
 
101.
Eaton
 
W. W.
Byrne
 
M.
Ewald
 
H.
et al.
Am. J. Psychiatry
2006
, vol. 
163
 pg. 
521
 
102.
Eaton
 
W. W.
Pedersen
 
M. G.
Nielsen
 
P. R.
Mortensen
 
P. B.
Bipolar Disord.
2010
, vol. 
12
 pg. 
638
 
103.
Carter
 
C. J.
J. Pathog.
2011
, vol. 
2011
 pg. 
128318
 
104.
Yolken
 
R. H.
Torrey
 
E. F.
Mol. Psychiatry
2008
, vol. 
13
 pg. 
470
 
105.
Brown
 
A. S.
Begg
 
M. D.
Gravenstein
 
S.
et al.
Arch. Gen. Psychiatry
2004
, vol. 
61
 pg. 
774
 
106.
Brown
 
A. S.
Derkits
 
E. J.
Am. J. Psychiatry
2010
, vol. 
167
 pg. 
261
 
107.
Brown
 
A. S.
Patterson
 
P. H.
Schizophr. Bull.
2011
, vol. 
37
 pg. 
284
 
108.
Torrey
 
E. F.
Bartko
 
J. J.
Lun
 
Z.
Yolken
 
R. H.
Schizophr. Bull.
2007
, vol. 
33
 pg. 
729
 
109.
Pedersen
 
M. G.
Stevens
 
H.
Pedersen
 
C. B.
Nørgaard-Pedersen
 
B.
Mortensen
 
P. B.
Am. J. Psychiatry
2011
, vol. 
168
 pg. 
814
 
110.
Meyer
 
U.
Feldon
 
J.
Yee
 
B. K.
Schizophr. Bull.
2009
, vol. 
35
 pg. 
959
 
111.
Patterson
 
P. H.
Behav. Brain Res.
2009
, vol. 
204
 pg. 
313
 
112.
Debnath
 
M.
Doyle
 
K. M.
Langan
 
C.
McDonald
 
C.
Leonard
 
B.
Cannon
 
D. M.
Transl. Neurosci.
2011
, vol. 
2
 pg. 
121
 
113.
Miller
 
B. J.
Buckley
 
P.
Seabolt
 
W.
Mellor
 
A.
Kirkpatrick
 
B.
Biol. Psychiatry
2011
, vol. 
70
 pg. 
663
 
114.
Potvin
 
S.
Stip
 
E.
Sepehry
 
A. A.
Gendron
 
A.
Bah
 
R.
Kouassi
 
E.
Biol. Psychiatry
2008
, vol. 
63
 pg. 
801
 
115.
Strous
 
R. D.
Shoenfeld
 
Y.
J. Autoimmun.
2006
, vol. 
27
 pg. 
71
 
116.
Doorduin
 
J.
de Vries
 
E. F. J.
Willemsen
 
A. T. M.
de Groot
 
J. C.
Dierckx
 
R. A.
Klein
 
H. C.
J. Nucl. Med.
2009
, vol. 
50
 pg. 
1801
 
117.
Monji
 
A.
Kato
 
T. A.
Mizoguchi
 
Y.
et al.
Prog. Neuropsychopharmacol. Biol. Psychiatry
2013
, vol. 
42
 pg. 
115
 
118.
Meyer
 
U.
Prog. Neuropsychopharmacol. Biol. Psychiatry
2013
, vol. 
42
 pg. 
20
 
119.
Saetre
 
P.
Emilsson
 
L.
Axelsson
 
E.
et al.
BMC Psychiatry
2007
, vol. 
7
 pg. 
46
 
120.
Smyth
 
A. M.
Lawrie
 
S. M.
Clin. Psychopharmacol. Neurosci.
2013
, vol. 
11
 pg. 
107
 
121.
Fond
 
G.
Hamdani
 
N.
Kapczinski
 
F.
et al.
Acta Psychiatr. Scand.
2014
, vol. 
129
 pg. 
163
 
122.
Fan
 
X.
Song
 
X.
Evidence-Based Mental Health
2013
, vol. 
16
 pg. 
10
 
123.
Sommer
 
I. E.
de Witte
 
L.
Begemann
 
M.
Kahn
 
R. S.
J. Clin. Psychiatry
2012
, vol. 
73
 pg. 
414
 
124.
Emamian
 
E. S.
Front. Mol. Neurosci.
2012
, vol. 
5
 pg. 
33
 
125.
Emamian
 
E. S.
Hall
 
D.
Birnbaum
 
M. J.
Karayiorgou
 
M.
Gogos
 
J. A.
Nat. Genet.
2004
, vol. 
36
 pg. 
131
 
126.
Ikeda
 
K.
Ikeda
 
K.
Iritani
 
S.
Ueno
 
H.
Niizato
 
K.
Prog. Neuropsychopharmacol. Biol. Psychiatry
2004
, vol. 
28
 pg. 
379
 
127.
Schwab
 
S. G.
Hoefgen
 
B.
Hanses
 
C.
et al.
Biol. Psychiatry
2005
, vol. 
58
 pg. 
446
 
128.
Bajestan
 
S. N.
Sabouri
 
A. H.
Nakamura
 
M.
et al.
Am. J. Med. Genet. B Neuropsychiatr. Genet.
2006
, vol. 
141B
 pg. 
383
 
129.
Xu
 
M.
Xing
 
Q.
Zheng
 
Y.
et al.
J. Clin. Psychiatry
2007
, vol. 
68
 pg. 
1358
 
130.
Thiselton
 
D. L.
Vladimirov
 
V. I.
Kuo
 
P.
et al.
Biol. Psychiatry
2008
, vol. 
63
 pg. 
449
 
131.
Ohtsuki
 
T.
Inada
 
T.
Arinami
 
T.
Mol. Psychiatry
2004
, vol. 
9
 pg. 
981
 
132.
Peineau
 
S.
Taghibiglou
 
C.
Bradley
 
C.
et al.
Neuron
2007
, vol. 
53
 pg. 
703
 
133.
Sutton
 
L. P.
Rushlow
 
W. J.
J. Neurochem.
2011
, vol. 
117
 pg. 
973
 
134.
Steinberg
 
S.
de Jong
 
S.
Mattheisen
 
M.
et al.
Mol. Psychiatry
2012
, vol. 
19
 pg. 
108
 
135.
Winchester
 
C. L.
Ohzeki
 
H.
Vouyiouklis
 
D. A.
et al.
Hum. Mol. Genet.
2012
, vol. 
21
 pg. 
4910
 
136.
de Anda
 
F. C.
Rosario
 
A. L.
Durak
 
O.
et al.
Nat. Neurosci.
2012
, vol. 
15
 pg. 
1022
 
137.
Yamasaki
 
T.
Kawasaki
 
H.
Arakawa
 
S.
et al.
J. Neurosci.
2011
, vol. 
31
 pg. 
16872
 
138.
Zihni
 
C.
Mitsopoulos
 
C.
Tavares
 
I. A.
Baum
 
B.
Ridley
 
A. J.
Morris
 
J. D.
J. Biol. Chem.
2007
, vol. 
282
 pg. 
6484
 
139.
Moore
 
T. M.
Garg
 
R.
Johnson
 
C.
Coptcoat
 
M. J.
Ridley
 
A. J.
Morris
 
J. D.
J. Biol. Chem.
2000
, vol. 
275
 pg. 
4311
 
140.
Stefansson
 
H.
Sigurdsson
 
E.
Steinthorsdottir
 
V.
et al.
Am. J. Hum. Genet.
2002
, vol. 
71
 pg. 
877
 
141.
Norton
 
N.
Moskvina
 
V.
Morris
 
D. W.
et al.
Am. J. Med. Genet. B Neuropsychiatr. Genet.
2006
, vol. 
141B
 pg. 
96
 
142.
Mei
 
L.
Xiong
 
W.
Nat. Rev. Neurosci.
2008
, vol. 
9
 pg. 
437
 
143.
Pratt
 
J.
Winchester
 
C.
Dawson
 
N.
Morris
 
B.
Nat. Rev. Drug discov.
2012
, vol. 
11
 pg. 
560
 
144.
Guilmatre
 
A.
Dubourg
 
C.
Mosca
 
A.
et al.
Arch. Gen. Psychiatry
2009
, vol. 
66
 pg. 
947
 
145.
McCarthy
 
S. E.
Makarov
 
V.
Kirov
 
G.
et al.
Nat. Genet.
2009
, vol. 
41
 pg. 
1223
 
146.
Glessner
 
J. T.
Reilly
 
M. P.
Kim
 
C. E.
et al.
Proc. Natl. Acad. Sci. U. S. A.
2010
, vol. 
107
 pg. 
10584
 
147.
Levinson
 
D. F.
Duan
 
J.
Oh
 
S.
et al.
Am. J. Psychiatry
2011
, vol. 
168
 pg. 
302
 
148.
Kirov
 
G.
Pocklington
 
A. J.
Holmans
 
P.
et al.
Mol. Psychiatry
2012
, vol. 
17
 pg. 
142
 
149.
Van Den Bossche
 
M. J.
Johnstone
 
M.
Strazisar
 
M.
et al.
Am. J. Med. Genet. B Neuropsychiatr. Genet.
2012
, vol. 
159B
 pg. 
812
 
150.
Woodside
 
B. L.
Borroni
 
A. M.
Hammonds
 
M. D.
Teyler
 
T. J.
Neurobiol. Learn. Mem.
2004
, vol. 
81
 pg. 
105
 
151.
Moosmang
 
S.
Haider
 
N.
Klugbauer
 
N.
et al.
J. Neurosci.
2005
, vol. 
25
 pg. 
9883
 
152.
White
 
J. A.
McKinney
 
B. C.
John
 
M. C.
Powers
 
P. A.
Kamp
 
T. J.
Murphy
 
G. G.
Learn. Mem.
2008
, vol. 
15
 pg. 
1
 
153.
Krug
 
A.
Witt
 
S. H.
Backes
 
H.
et al.
Eur. Arch. Psychiatry Clin. Neurosci.
2014
, vol. 
264
 pg. 
103
 
154.
Perrin
 
M. J.
Gollob
 
M. H.
Can. J. Cardiol.
2013
, vol. 
29
 pg. 
89
 
155.
Splawski
 
I.
Timothy
 
K. W.
Sharpe
 
L. M.
et al.
Cell
2004
, vol. 
119
 pg. 
19
 
156.
Bidaud
 
I.
Mezghrani
 
A.
Swayne
 
L. A.
Monteil
 
A.
Lory
 
P.
BBA – Mol. Cell Res.
2006
, vol. 
1763
 pg. 
1169
 
157.
Kuryshev
 
Y. A.
Brown
 
A. M.
Duzic
 
E.
Kirsch
 
G. E.
Assay Drug Dev. Technol.
2014
, vol. 
12
 pg. 
110
 
158.
Uebele
 
V. N.
Nuss
 
C. E.
Fox
 
S. V.
et al.
Cell Biochem. Biophys.
2009
, vol. 
55
 pg. 
81
 
159.
Beveridge
 
N. J.
Cairns
 
M. J.
Neurobiol. Dis.
2012
, vol. 
46
 pg. 
263
 
160.
Smrt
 
R. D.
Szulwach
 
K. E.
Pfeiffer
 
R. L.
et al.
Stem Cells
2010
, vol. 
28
 pg. 
1060
 
161.
Szulwach
 
K. E.
Li
 
X.
Smrt
 
R. D.
et al.
J. Cell Biol.
2010
, vol. 
189
 pg. 
127
 
162.
Sun
 
G.
Ye
 
P.
Murai
 
K.
et al.
Nat. Commun.
2011
, vol. 
2
 pg. 
529
 
163.
Willemsen
 
M. H.
Valles
 
A.
Kirkels
 
L. A.
et al.
J. Med. Genet.
2011
, vol. 
48
 pg. 
810
 
164.
Kwon
 
E.
Wang
 
W.
Tsai
 
L. H.
Mol. Psychiatry
2013
, vol. 
18
 pg. 
11
 
165.
Hill
 
M. J.
Donocik
 
J. G.
Nuamah
 
R. A.
Mein
 
C. A.
Sainz-Fuertes
 
R.
Bray
 
N. J.
Schizophr. Res.
2014
, vol. 
153
 
1–3
(pg. 
225
-
230
)
166.
Cabili
 
M. N.
Trapnell
 
C.
Goff
 
L.
et al.
Genes Dev.
2011
, vol. 
25
 pg. 
1915
 
167.
Itsara
 
A.
Cooper
 
G. M.
Baker
 
C.
et al.
Am. J. Hum. Genet.
2009
, vol. 
84
 pg. 
148
 
168.
St Clair
 
D.
Blackwood
 
D.
Muir
 
W.
et al.
Lancet
1990
, vol. 
336
 pg. 
13
 
169.
Millar
 
J.
Christie
 
S.
Semple
 
C.
Porteous
 
D.
Genomics
2000
, vol. 
67
 pg. 
69
 
170.
Song
 
W.
Li
 
W.
Feng
 
J.
Heston
 
L. L.
Scaringe
 
W. A.
Sommer
 
S. S.
Biochem. Biophys. Res. Commun.
2008
, vol. 
367
 pg. 
700
 
171.
Green
 
E. K.
Grozeva
 
D.
Sims
 
R.
et al.
Am. J. Med. Genet. B Neuropsychiatr. Genet.
2011
, vol. 
156B
 pg. 
490
 
172.
Moens
 
L. N.
De Rijk
 
P.
Reumers
 
J.
et al.
PloS One
2011
, vol. 
6
 pg. 
e23450
 
173.
Soares
 
D. C.
Carlyle
 
B. C.
Bradshaw
 
N. J.
Porteous
 
D. J.
ACS Chem. Neurosci.
2011
, vol. 
2
 pg. 
609
 
174.
Duan
 
X.
Chang
 
J. H.
Ge
 
S.
et al.
Cell
2007
, vol. 
130
 pg. 
1146
 
175.
Lee
 
F. H.
Fadel
 
M. P.
Preston-Maher
 
K.
et al.
J. Neurosci.
2011
, vol. 
31
 pg. 
3197
 
176.
Porteous
 
D. J.
Millar
 
J. K.
Brandon
 
N. J.
Sawa
 
A.
Trends Mol. Med.
2011
, vol. 
17
 pg. 
699
 
177.
Clapcote
 
S. J.
Lipina
 
T. V.
Millar
 
J. K.
et al.
Neuron
2007
, vol. 
54
 pg. 
387
 
178.
Lipina
 
T. V.
Zai
 
C.
Hlousek
 
D.
Roder
 
J. C.
Wong
 
A. H. C.
J. Neurosci.
2013
, vol. 
33
 pg. 
7654
 
179.
Haque
 
F. N.
Lipina
 
T. V.
Roder
 
J. C.
Wong
 
A. H. C.
Behav. Brain Res.
2012
, vol. 
233
 pg. 
337
 
180.
Cash-Padgett
 
T.
Jaaro-Peled
 
H.
Front. Behav. Neurosci.
2013
, vol. 
7
 pg. 
113
 
181.
Camargo
 
L. M.
Collura
 
V.
Rain
 
J.
et al.
Mol. Psychiatry
2007
, vol. 
12
 pg. 
74
 
182.
Bradshaw
 
N. J.
Soares
 
D. C.
Carlyle
 
B. C.
et al.
J. Neurosci.
2011
, vol. 
31
 pg. 
9043
 
183.
Bradshaw
 
N. J.
Porteous
 
D. J.
Neuropharmacol.
2012
, vol. 
62
 pg. 
1230
 
184.
Millar
 
J. K.
Pickard
 
B. S.
Mackie
 
S.
et al.
Science (New York, N. Y.)
2005
, vol. 
310
 pg. 
1187
 
185.
Lee
 
F. H. F.
Kaidanovich-Beilin
 
O.
Roder
 
J. C.
Woodgett
 
J. R.
Wong
 
A. H. C.
Schizophr. Res.
2011
, vol. 
129
 pg. 
74
 
186.
Wang
 
Q.
Charych
 
E. I.
Pulito
 
V. L.
et al.
Mol. Psychiatry
2011
, vol. 
16
 pg. 
1006
 
187.
Rujescu
 
D.
Ingason
 
A.
Cichon
 
S.
et al.
Hum. Mol. Genet.
2009
, vol. 
18
 pg. 
988
 
188.
Vrijenhoek
 
T.
Buizer-Voskamp
 
J.
van
 
d. S.
et al.
Am. J. Hum. Genet.
2008
, vol. 
83
 pg. 
504
 
189.
Kirov
 
G.
Gumus
 
D.
Chen
 
W.
et al.
Hum. Mol. Genet.
2008
, vol. 
17
 pg. 
458
 
190.
Kong
 
A.
Frigge
 
M. L.
Masson
 
G.
et al.
Nature
2012
, vol. 
488
 pg. 
471
 
191.
Cook
 
E.
Scherer
 
S.
Nature
2008
, vol. 
455
 pg. 
919
 
192.
Sanders
 
S.
Ercan-Sencicek
 
A.
Hus
 
V.
et al.
Neuron
2011
, vol. 
70
 pg. 
863
 
193.
Li
 
X.
Zhang
 
J.
Cao
 
Z.
Wu
 
J.
Shi
 
Y.
Protein Sci.
2006
, vol. 
15
 pg. 
2149
 
194.
Knight
 
D.
Xie
 
W.
Boulianne
 
G. L.
Mol. Neurobiol.
2011
, vol. 
44
 pg. 
426
 
195.
Zeng
 
L.
Zhang
 
P.
Shi
 
L.
Yamamoto
 
V.
Lu
 
W.
Wang
 
K.
PloS One
2013
, vol. 
8
 pg. 
e59685
 
196.
Vacic
 
V.
McCarthy
 
S.
Malhotra
 
D.
et al.
Nature
2011
, vol. 
471
 pg. 
499
 
197.
Beri
 
S.
Bonaglia
 
M. C.
Giorda
 
R.
Eur. J. Hum. Genet.
2013
, vol. 
21
 pg. 
757
 
198.
Dickson
 
L.
Finlayson
 
K.
Pharmacol. Ther.
2009
, vol. 
121
 pg. 
294
 
199.
Thomas
 
D. C.
Yang
 
Z.
Yang
 
F.
Front. Genet.
2013
, vol. 
4
 pg. 
276
 
200.
Xu
 
B.
Roos
 
J. L.
Levy
 
S.
van Rensburg
 
E. J.
Gogos
 
J. A.
Karayiorgou
 
M.
Nat. Genet.
2008
, vol. 
40
 pg. 
880
 
201.
Purcell
 
S. M.
Moran
 
J. L.
Fromer
 
M.
et al.
Nature
2014
, vol. 
506
 pg. 
185
 
202.
Medicins kaoch Farmaceutisca Vetenscapsomr
 
f. v.
Nature
2008
, vol. 
455
 pg. 
237
 
203.
Fromer
 
M.
Pocklington
 
A. J.
Kavanagh
 
D. H.
et al.
Nature
2014
, vol. 
506
 pg. 
179
 
204.
Need
 
A. C.
McEvoy
 
J. P.
Gennarelli
 
M.
et al.
Am. J. Hum. Genet.
2012
, vol. 
91
 pg. 
303
 
205.
Xu
 
B.
Ionita-Laza
 
I.
Roos
 
J. L.
et al.
Nat. Genet.
2012
, vol. 
44
 pg. 
1365
 
206.
Girard
 
S. L.
Gauthier
 
J.
Noreau
 
A.
et al.
Nat. Genet.
2011
, vol. 
43
 pg. 
860
 
207.
Awadalla
 
P.
Gauthier
 
J.
Myers
 
R. A.
et al.
Am. J. Hum. Genet.
2010
, vol. 
87
 pg. 
316
 
208.
Raychaudhuri
 
S.
Korn
 
J. M.
McCarroll
 
S. A.
et al.
PLoS Genet.
2010
, vol. 
6
 pg. 
e1001097
 
209.
Raychaudhuri
 
S.
Plenge
 
R. M.
Rossin
 
E. J.
et al.
PloS Genet.
2009
, vol. 
5
 pg. 
e1000534
 
210.
Shi
 
Y.
Li
 
Z.
Xu
 
Q.
et al.
Nat. Genet.
2011
, vol. 
43
 pg. 
1224
 
211.
Yue
 
W.
Wang
 
H.
Sun
 
L.
et al.
Nat. Genet.
2011
, vol. 
43
 pg. 
1228
 
212.
Mitrea
 
C.
Taghavi
 
Z.
Bokanizad
 
B.
et al.
Front. Physiol.
2013
, vol. 
4
 pg. 
278
 
213.
Andreassen
 
O. A.
Thompson
 
W. K.
Schork
 
A. J.
et al.
PLoS Genet.
2013
, vol. 
9
 pg. 
e1003455
 
214.
Schork
 
A. J.
Thompson
 
W. K.
Pham
 
P.
et al.
PLoS Genet.
2013
, vol. 
9
 pg. 
e1003449
 
215.
Andreassen
 
O. A.
Djurovic
 
S.
Thompson
 
W. K.
et al.
Am. J. Hum. Genet.
2013
, vol. 
92
 pg. 
197
 
216.
Andreassen
 
O. A.
Thompson
 
W. K.
Dale
 
A. M.
Schizophr. Bull.
2014
, vol. 
40
 pg. 
13
 
217.
Ivleva
 
E.
Thaker
 
G.
Tamminga
 
C. A.
Schizophr. Bull.
2008
, vol. 
34
 pg. 
734
 
218.
American Psychiatric Association
,
Diagnostic and statistical manual of mental disorders: DSM-5
,
American Psychiatric Association
,
Washington, D.C
,
2013
219.
Rosen
 
C.
Marvin
 
R.
Reilly
 
J. L.
et al.
Clin. Schizophr. Relat. Psychoses
2012
, vol. 
6
 pg. 
145
 
220.
Endicott
 
J.
Nee
 
J.
Fleiss
 
J.
Cohen
 
J.
Williams
 
J. B.
Simon
 
R.
Arch. Gen. Psychiatry
1982
, vol. 
39
 pg. 
884
 
221.
Endicott
 
J.
Nee
 
J.
Cohen
 
J.
Fleiss
 
J. L.
Simon
 
R.
Arch. Gen. Psychiatry
1986
, vol. 
43
 pg. 
13
 
222.
Peralta
 
V.
Cuesta
 
M. J.
Schizophr. Res.
2005
, vol. 
79
 pg. 
217
 
223.
Dikeos
 
D. G.
Wickham
 
H.
McDonald
 
C.
et al.
Br. J. Psychiatry
2006
, vol. 
189
 pg. 
346
 
224.
Cross-Disorder Group of the Psychiatric Genomics Consortium
 
Lancet
2013
, vol. 
381
 pg. 
1371
 
225.
Gould
 
T. D.
Gottesman
 
I. I.
Genes Brain Behav.
2006
, vol. 
5
 pg. 
113
 
226.
Glahn
 
D. C.
Curran
 
J. E.
Winkler
 
A. M.
et al.
Biol. Psychiatry
2012
, vol. 
71
 pg. 
6
 
227.
Glahn
 
D. C.
Almasy
 
L.
Blangero
 
J.
et al.
Am. J. Med. Genet. B Neuropsychiatr. Genet.
2007
, vol. 
144B
 pg. 
242
 
228.
Bramon
 
E.
McDonald
 
C.
Croft
 
R. J.
et al.
Neuroimage
2005
, vol. 
27
 pg. 
960
 
229.
Snitz
 
B. E.
Macdonald III
 
Angus W.
Carter
 
C. S.
Schizophr. Bull.
2006
, vol. 
32
 pg. 
179
 
230.
Greenwood
 
T. A.
Lazzeroni
 
L. C.
Murray
 
S. S.
et al.
Am. J. Psychiatry
2011
, vol. 
168
 pg. 
930
 
231.
McDonald
 
C.
Bullmore
 
E. T.
Sham
 
P. C.
et al.
Arch. Gen. Psychiatry
2004
, vol. 
61
 pg. 
974
 
232.
Swerdlow
 
N. R.
Light
 
G. A.
Sprock
 
J.
et al.
Schizophr. Res.
2014
, vol. 
152
 pg. 
503
 
233.
Glahn
 
D. C.
Knowles
 
E. E.
McKay
 
D. R.
et al.
Am. J. Med. Genet. B. Neuropsychiatr. Genet.
2014
, vol. 
165B
 pg. 
122
 
234.
Winchester
 
C. L.
Pratt
 
J. A.
Morris
 
B. J.
Pharmacol. Ther.
2014
235.
O’Donoghue
 
T.
Morris
 
D. W.
Fahey
 
C.
et al.
Transl. Psychiatry.
2014
, vol. 
4
 pg. 
e345
 
236.
Bowie
 
C. R.
Reichenberg
 
A.
McClure
 
M. M.
Leung
 
W. L.
Harvey
 
P. D.
Schizophr. Res.
2008
, vol. 
106
 pg. 
50
 
237.
Keefe
 
R. S. E.
Sweeney
 
J. A.
Gu
 
H.
et al.
Am. J. Psychiatry
2007
, vol. 
164
 pg. 
1061
 
238.
Reilly
 
J. L.
Sweeney
 
J. A.
Schizophr. Bull.
2014
239.
Hill
 
S. K.
Bishop
 
J. R.
Palumbo
 
D.
Sweeney
 
J. A.
Expert Rev. Neurother.
2010
, vol. 
10
 pg. 
43
 
240.
Goldberg
 
X.
Alemany
 
S.
Rosa
 
A.
et al.
Am. J. Med. Genet. B. Neuropsychiatr. Genet.
2013
, vol. 
162B
 pg. 
413
 
241.
Bakanidze
 
G.
Roinishvili
 
M.
Chkonia
 
E.
et al.
Front. Psychiatry
2013
, vol. 
4
 pg. 
133
 
242.
Quednow
 
B. B.
Brzozka
 
M. M.
Rossner
 
M. J.
Cell. Mol. Life Sci.
2014
243.
Bagdy
 
G.
Juhasz
 
G.
Expert Opin. Med. Diagn.
2013
, vol. 
7
 pg. 
417
 
244.
Craddock
 
N.
O’Donovan
 
M. C.
Owen
 
M. J.
J. Med. Genet.
2005
, vol. 
42
 pg. 
193
 
245.
Williams
 
N. M.
Glaser
 
B.
Norton
 
N.
et al.
Hum. Mol. Genet.
2008
, vol. 
17
 pg. 
555
 
246.
Turner
 
D. J.
Miretti
 
M.
Rajan
 
D.
et al.
Nat. Genet.
2008
, vol. 
40
 pg. 
90
 
247.
Bruder
 
C. E.
Piotrowski
 
A.
Gijsbers
 
A. A.
et al.
Am. J. Hum. Genet.
2008
, vol. 
82
 pg. 
763
 
248.
Mill
 
J.
Tang
 
T.
Kaminsky
 
Z.
et al.
Am. J. Hum. Genet.
2008
, vol. 
82
 pg. 
696
 
249.
Steinberg
 
S.
de Jong
 
S.
Irish Schizophrenia Genomics Consortium
 
et al.
Hum. Mol. Genet.
2011
, vol. 
20
 pg. 
4076
 
250.
Williams
 
H. J.
Norton
 
N.
Dwyer
 
S.
et al.
Mol. Psychiatry
2011
, vol. 
16
 pg. 
429
 
Close Modal

or Create an Account

Close Modal
Close Modal