Skip to Main Content
Skip Nav Destination

The 2-oxoglutarate (2OG)-dependent oxygenases utilize dioxygen and 2OG to oxidize a wide variety of substrates. Over the past two decades, a number of Fe(ii)-containing model systems of structural relevance to 2OG-dependent enzymes utilizing tripodal ligand frameworks and 2-oxo acids have provided great insight into the reactivity of these enzymes. Like the 2OG-dependent enzymes, the model complexes react with dioxygen and carry out the oxidative decarboxylation of a 2-oxoacid to generate a potent oxidant that is likely to be an Fe(iv)O intermediate. Over the past 12 years, many Fe(iv)O complexes have been synthesized, spanning a variety of ligand motifs, coordination geometries and spin states. This chapter reviews the synthetic strategies applied to generating both functional models of the reactions carried out by 2OG-dependent enzymes, as well as spectroscopic models of relevance to transient reaction intermediates. A focus is given to advances in understanding of the enzymatic reaction obtained from studying the reactivity of these synthetic systems.

You do not currently have access to this chapter, but see below options to check access via your institution or sign in to purchase.
Don't already have an account? Register
Close Modal

or Create an Account

Close Modal
Close Modal