Skip to Main Content
Skip Nav Destination

Central steps in the biosynthetic pathways of some of the most commonly used antibiotics, the cephalosporins, are catalysed by 2-oxoglutarate (2OG)-dependent oxygenases. Deacetoxycephalosporin C synthase (DAOCS) catalyses the 2OG-dependent oxidative expansion of the five-membered thiazolidine ring of the penicillin nucleus into the six-membered dihydrothiazine ring of the cephalosporin nucleus. DAOCS uses dioxygen to create a reactive iron–oxygen intermediate from ferrous ion to drive the reaction. In prokaryotic cephalosporin producers, the cephalosporin product, DAOC, is hydroxylated at the 3′-position to form deacetylcephalosporin C (DAC) as catalysed by a second 2OG-dependent enzyme, DAC synthase (DACS). In eukaryotic cephalosporin producers, the reaction is catalysed by a bifunctional enzyme, DAOC/DACS, that catalyses both the ring expansion and the 3′-hydroxylation reactions. The prokaryotic and eukaryotic enzymes are closely related to DAOCS by sequence, suggesting these enzymes may have evolved by gene duplication. Cephamycin C-producing microorganisms use two enzymes, encoded by the genes cmcI/J, to convert cephalosporins to their 7α-methoxy derivatives that are less vulnerable to β-lactam hydrolysing enzymes. The methoxylation reaction is dependent on Fe(ii), 2OG and S-adenosylmethionine, suggesting the involvement of another 2OG-dependent oxygenase. Herein, structural and mechanistic features are summarized for these 2OG enzymes that utilize this common and flexible mode of dioxygen activation.

You do not currently have access to this chapter, but see below options to check access via your institution or sign in to purchase.
Don't already have an account? Register
Close Modal

or Create an Account

Close Modal
Close Modal