Skip to Main Content
Skip Nav Destination

Enantioselective phase-transfer catalysis (PTC) is among the most useful asymmetric methodologies for practical syntheses, due to its operational simplicity, mild reaction conditions, environmentally friendly reaction procedure, and applicability to large-scale synthesis in industrial processes. In particular, the use of water as a solvent, heavy transition metal-free conditions, and low energy consumption due to employing room temperature or 0 °C as the reaction temperature make phase-transfer catalysis suitable as a sustainable green chemistry. Cinchona alkaloids have been a popular natural source of practical chiral organocatalysts due to their unique structures and commercial availability at low cost. Since the first successful application of Cinchona alkaloid-derived ammonium salts as phase-transfer catalysts in 1984, many Cinchona alkaloid derivatives have been developed and successfully applied to various asymmetric phase-transfer catalysis reactions serving as a sustainable green chemistry. In this chapter, we describe the development of Cinchona-derived chiral PTC catalysts, mainly based on asymmetric alkylation using Schiff base substrates and their applications to a variety of other enantioselective transformations.

You do not currently have access to this chapter, but see below options to check access via your institution or sign in to purchase.
Don't already have an account? Register
Close Modal

or Create an Account

Close Modal
Close Modal