Skip to Main Content
Skip Nav Destination

This chapter provides an overview of organoselenium chemistry. The chemistry of organoselenium compounds has undergone rapid growth during the past three decades due to their increasing applications in organic synthesis, precursors for metal selenide semiconductor materials and as mimics of seleno-enzymes in biological processes. Several selenium species are formed during the catalytic cycle involving glutathione peroxidise as an antioxidant. This chapter gives general aspects of organoselenium chemistry and includes synthetic methods for the preparation of diorganodiselenides, selenols, diorganoselenides, selenoxides, etc. which have relevance in the glutathione peroxidise catalytic cycle.

Selenium is a member of the group 16 elements (O, S, Se, Te and radioactive Po), collectively known as chalcogens. It was discovered in 1817 by J.J. Berzelius in the reddish deposits that formed in the lead chambers at his sulfuric acid plant at Gripsholm in Sweden. He named the element selenium in the honour of Greek goddess ‘Selene’ meaning moon.1 

The chemistry of selenium compounds was neglected for more than a century; the entire literature2  comprised only ∼200 papers until 1920 and it remained an arcane field of investigation until 1970. This slow development can be attributed to the malodorous reputation of its compounds, toxicity, the instability of certain derivatives as well as the general belief that the chemistry of selenium, due to its proximity to sulfur, would be more or less similar to that of sulfur compounds. However, such beliefs and perceptions for organoselenium compounds were defied by an exponential growth of organoselenium chemistry during past three decades or so. The following three major, interdependent factors have contributed to this rapid development of the field.

  • Role in organic chemistry: since its discovery in the early 1930s as an oxidizing agent for organic compounds,3  selenium dioxide (SeO2) was used predominantly in organic synthesis until the early 1970s. However, around this time several useful reactions and processes were discovered4–6  and the interest in organoselenium compounds was further catalysed with the publication of a monograph by Klayman and Günther.7  Since then, the number of reactions as well as the variety of selenium compounds have grown dramatically.8  Selenium can be introduced to a myriad organic substrates as an electrophile, nucleophile or even as a radical in a chemo-, regio- and stereo-selective manner.

  • Organometallic chemistry and materials science: although metal complexes of seleno ligands (e.g. [PtCl2(R2Se)2]; R=Me, Et, Prn, Ph) were first synthesized more than a century ago,9  reports on organoselenium complexes appeared only sporadically until the early 1990s,10  possibly due to poorly developed synthetic processes for the desired organoselenium compounds. Selenium ligands quite often show unusual reactivity that differs from their sulfur counterparts.11  Platinum group metal complexes with seleno ligands were developed as catalysts for various reactions since the 1990s,12–14  and in some cases exhibit even better catalytic activity than the corresponding thio derivatives.12  Further impetus to selenium chemistry comes from recent interest in semiconductor metal selenide nano-materials.15–17  Metal selenolates have emerged as versatile single-source molecular precursors for the synthesis of nano-particles and deposition of thin films of metal selenides.

  • Selenium in biology:18  selenium was long considered a poison until 1957 when Schwarz and Foltz identified it as an essential micronutrient.19  Fifteen years later selenocysteine, the 21st amino acid, was discovered at the active site of glutathione peroxidase (GPx), establishing the role of selenium in mammals.20  Since then, approximately 40 seleno enzymes, exhibiting a range of functions have been identified.21  GPx has been extensively investigated due to its diversity of biological roles. To mimic the functions of GPx and related enzymes, several organoselenium compounds have been designed and developed. Ebselen is a promising candidate as an oxidant.22  The mechanistic aspects of the antioxidant activity of GPx have been worked out and the formation of several selenium species has been proposed during the catalytic cycle.23 

In the light of the above, an overview of organoselenium chemistry is presented in this chapter.

Selenium is a trace element occurring at an average level of 9×10−5% (0.09 ppm) in the earth's crust. There is substantial geographical variations in agricultural soils, giving selenium-deficient, -adequate and -excess (toxic) regions.24  In general, selenium-deficient and -adequate regions are much more widespread than the selenium-excess regions. Selenium exists in various chemical forms in soil, which influences the availability of the element to plants. Selenium in food grains, legumes and vegetables occurs primarily in organic form (such as MetSe, cysSeMe, cysSeSecys, etc.) and is often referred as dietary selenium.25  Keshan disease, Kashin–Beck disease and several dangerous viral infections (H1N1 influenza, SARS, HIV/AIDS, Ebola, etc.) are associated with selenium deficiency and outbreaks of them have originated either in bio-geo-chemically selenium-poor regions of China or selenium nutrient-depleted sub-Saharan Africa.26  Acute toxicities in grazing animals were first reported in South Dakota in the 1930s, which was locally known as ‘alkali disease’.27  More recently, high selenium content (750–5000 μg day−1 per person) has been reported in food grown in the Punjab province of India.28  Selenium intake varies worldwide, ranging from 7 μg day−1 to 4990 μg day−1.25  In fact, there is a very narrow window between dietary deficiency (<40 μg day−1) and toxic levels (>400 μg day−1) in humans, and the recommended dietary intake of selenium is 50–70 μg day−1.29  For this reason, selenium is referred as an ‘essential poison’.30 

Selenium occurs in sulfide ores of heavy non-ferrous metals—copper, copper–nickel and multi-metallic sulfides. There is a wide variation in the selenium content of these ores. As there is no primary mineral/ore that contains an economically significant amount of selenium, it is recovered as a by-product, mostly from the anode slimes generated from the electrolytic refining of copper. The selenium content of the slimes vary from 2% to 55%, the average being ∼10%. Although selenium was discovered in 1817, its commercial production in appreciable quantities began only about a century later. Global production of selenium is hard to estimate, because it is a by-product of copper refineries. Nevertheless, it is estimated that in 2013 the global production (excluding USA and China) was >2170 metric tonnes (Figure 1.1a). The first practical application of selenium was realized in 1873 when photo-conducting properties were reported, which were exploited for the development of photo-cells. Since then a wide range of applications have been developed which include (i) electronics and photocopier machines (∼30%); (ii) the glass industry (∼35%); (iii) pigments (∼10%); (iv) metallurgy (∼10%); (v) agriculture and biology (∼10%); and (vi) others (∼5%) (Figure 1.1b).

Figure 1.1

(a) Global production (excluding USA and China) of selenium in 2013; (b) consumption of selenium in different industries.

Figure 1.1

(a) Global production (excluding USA and China) of selenium in 2013; (b) consumption of selenium in different industries.

Close modal

Selenium has several allotropic forms in both the amorphous and crystalline states at room temperature and adopts either helical polymeric chain or Se8 ring structures with Se–Se distances varying between 2.32 and 2.37 Å.1,31,32  The density of selenium varies between 4.20 and 4.81 g cm−3. The following modifications of selenium are now well recognized: (i) amorphous or α-selenium (red and black forms); (ii) vitreous or glassy selenium (ordinary commercial form); (iii) crystalline monoclinic or β-selenium (red α-form and deep-red β-form); and (iv) trigonal grey or γ-selenium. The latter form (grey selenium), comprising of helical polymeric chains, is a p-type semiconductor and shows appreciable photoconductivity, whereas other modifications are insulators.

Selenium can adopt a range of integral and fractional formal oxidation states. The main integral oxidation states are −2 (e.g. sodium selenide, Na2Se), −1 (e.g. disodium diselenide, Na2Se2), 0 (e.g. Se8), +1 (e.g. diselenium dichloride, Se2Cl2), +2 (e.g. selenium dichloride, SeCl2), +4 (e.g. sodium selenite, Na2SeO3) and +6 (e.g. sodium selenate, Na2SeO4); the latter oxidation state being less stable than the corresponding known sulfur compounds. The fractional oxidation states are reported in polyselenium-cations (Sen2+; n=4 (oxidation state +½) and n=8 (oxidation state +¼))33–35  and -anions (Sen2−; n=3–11, 16).34–36  The hypervalent nature of selenium based on 3c–4e interactions is also encountered in its compounds.37  In the divalent state, selenium can either weakly donate its electron pair (a Lewis base) to a metal centre (M) or partially accept a lone pair (a Lewis acid) from another atom (Y, such as H, N, O, S, Cl, I, etc.) (Scheme 1.1). The latter interaction results in a linear C–Se⋯Y bond, which is thought to be responsible for the bioactivity of these compounds.37  Redox cycling of selenium between various oxidation states occurs readily (Scheme 1.2).38  Accordingly, selenium can act as an oxidant as well as reductant in many reactions. Various single-bond energies involving selenium, such as Se–H (66 kcal mol−1), Se–C (56 kcal mol−1), Se–Se (46 kcal mol−1), are intermediate between corresponding sulfur and tellurium compounds.39 

Scheme 1.1

Non-bonding interactions involving divalent selenium.

Scheme 1.1

Non-bonding interactions involving divalent selenium.

Close modal
Scheme 1.2

Standard redox potentials (in volts at 25 °C) in acid solution (pH=0).

Scheme 1.2

Standard redox potentials (in volts at 25 °C) in acid solution (pH=0).

Close modal

Out of six naturally occurring isotopes of selenium, only the 77Se isotope has spin quantum number ½ with natural abundance of 7.58%. It has favorable nuclear magnetic resonance (NMR) properties that include a positive magnetogyric ratio (5.101) and 5.26×10−4 relative receptivity with respect to proton.40  The nuclear Overhauser effects are absent, while longitudinal relaxation times (T1) are usually a few seconds (1–30 s), are influenced by spin-rotation (small molecules) and chemical shift anisotropy (larger molecules) mechanisms.41  Accordingly, 77Se NMR spectroscopy has emerged as a powerful diagnostic tool in organoselenium chemistry and its popularity is growing,42,43  although initial progress was sluggish—only ∼300 articles were published before 1985.42  Different materials have been used as a reference; dimethylselenide (Me2Se) is now universally accepted, but being malodorous and volatile, a secondary reference, diphenyldiselenide (Ph2Se2; δ77Se=463 ppm) in C6D6 is commonly used.

Like any other heavy nuclei, the 77Se NMR chemical shifts cover a large spectral window of ∼3300 ppm, bridging selenides being most shielded (e.g. [{CpW(CO)2}2(μ-Se)] δ77Se=−900 ppm), while selenoaldehydes are most deshielded (e.g. 2,4,6-But3C6H2–C(H)Se; δ77Se=2398 ppm).42  The large chemical shift range is advantageous in the dispersion of resonances of closely related species; even a small chemical shift difference of diastereomeric diselenides can be resolved. For instance, for a mixture of regio-isomeric diselenides (Scheme 1.3), closely spaced (∼1 ppm) resonances for two distinct selenium centers for each isomeric diselenide have been reported.44  The 77Se NMR chemical shifts are highly sensitive to oxidation state, the stereochemistry of selenium and its local environment.45–48  Larger δ values (deshielding) are usually associated with a decrease in electron density of selenium. A wide variation in 77Se NMR chemical shifts with respect to the chemical state of selenium can be noted in biologically important compounds: H3N+CH2CH2SeH (δ77Se=−81.6 ppm), H3N+CH2CH2Se (δ77Se=−245.6 ppm), (H3N+CH2CH2Se)2 (δ77Se=251.3 ppm), H3N+CH2CH2Se–SCH2CH2NH3+(δ77Se=322.7 ppm)48  and H2NCH2CH2SeO2H (δ77Se=1226 ppm).47  The effect of the local environment on 77Se NMR chemical shifts, as an example, is evident in o-carbonyl benzeneselenenyl compounds,45  2-RC6H4SeX. With a given R the shifts are spread over >800 ppm on changing X (X=Cl, Br, SCN, CN, Me) (R=Ac, X=Cl (δ, 1087 ppm); X=Me (δ, 282 ppm)), while this variation is ∼100 ppm upon varying R and keeping the X group reserved. The intra-molecular non-bonding Se⋯X interaction, resulting from a nx-σ*Se orbital interaction leads to a downfield shift of the 77Se NMR resonance.49  Approximate linear correlation between the 77Se NMR shifts and the strength of non-bonding Se⋯X interaction has been found using theoretical calculations.50 77Se NMR spectroscopy is gaining momentum for understanding various process, like conformational mobility, molecular interactions of selenocysteine (sec) in biological macromolecules etc., involving selenoproteins in biological samples.51  Site-specific pKa values of multiple sec-incorporated peptides have been determined using 77Se NMR spectroscopy, which differ (3.3 and 4.3) depending on its position in the polypeptide, and are significantly lower than the values for free sec (5.2–5.6).52  Peroxidase activity of selenosubtilisin and selenonicotinamide has been investigated using 77Se NMR spectroscopy and the involvement of selenol (RSeH), selenenic acid (RSeOH), selenenyl sulfide (RSeSR′) and seleninic acid (RSe(O)OH), have been identified in the catalytic cycle.53,54 

Scheme 1.3

Regio-isomeric diselenides.

Scheme 1.3

Regio-isomeric diselenides.

Close modal

The presence of other nuclear spin 1/2 nuclei results in spin–spin couplings which appear as satellite peaks and provide invaluable information about the structure and stereochemistry of the molecule. Almost all coupling constants nJ(77Se–X) are now reported. The 1J(77Se–1H) coupling constants for selenol range between 44 and 65 Hz. The 1J(77Se–13C) couplings in organoselenium compounds vary in the range 45–90 Hz,55,56  whereas these values are much larger (127–250 Hz) in fluorinated selenium compounds and selenocynates.57  The 2J(77Se–13C) couplings in alkylseleno-ethers and dialkyldiselenides are 4–15 Hz.55  Selenium–phosphorus couplings have been extensively investigated. The magnitude of 1J(77Se–31P) couplings falls in the range 200–500 Hz and 500–∼1000 Hz for formal selenium–phosphorus single and double bonds, respectively. The 2J(77Se–31P) values vary from few hertz to a few tens of hertz and have great diagnostic importance in determining the stereochemistry of the molecule58  (e.g. 2J(77Se–31P) values for cis and trans isomers of [Pt(SePh)2(PPh3)2] are 45 Hz and 7 Hz, respectively58a ). The 1J(77Se–77Se) couplings in diselenides and inorganic seleno-cations fall in the range of 11–400 Hz; cations and cyclic diselenides showing larger coupling constants.56,59  Single bond coupling with heavier nuclei can run in several hundreds of hertz. The 1J(119Sn–77Se) in diorganotin selenolates (e.g. [Me2Sn{SeC4H(Me-4,6)2N2}2], 1J(119Sn–77Se)=725 Hz) varies in the range 595–1000 Hz.17,60  Similarly, the 1J(195Pt–77Se) coupling constants range from ∼100 Hz to several hundred hertz (e.g. 1J(195Pt–77Se) for trans-[Pt(SeC5H4N-4)2(PEt3)2] is 81 Hz and for [Pt2Cl2(μ-SeBz)2(PPr3)2] is 134 229 Hz).61 

Naturally occurring selenium is a mixture of six isotopes: 74Se (0.87%), 76Se (9.02%), 77Se (7.58%), 78Se (23.52%), 80Se (49.82%) and 82Se (9.19%). This distribution gives rise to characteristic isotopic patterns in mass spectra of selenium compounds. Mass spectrometry has therefore emerged as one of the principal techniques for characterization of selenium-containing molecules. Besides its routine use in synthetic organic chemistry of selenium, its use for the characterization of selenium-containing metabolites in Se-rich yeast, as well as in biological samples is growing.62,63 

In addition to the 77Se NMR and mass spectral investigations on selenium compounds, a rapid progress can also be attributed to X-ray crystallography. A search of the Cambridge Structural Database (2015) revealed that there were ∼300 structural data on selenium compounds before 1980, which increased rapidly after 2000. The database now covers >11 000 structures (Figure 1.2). The structures of selenium compounds in all covalencies from one to six, as well as cyclic ring compounds are reported. Structures, in general, are consistent with the valence shell electron pair repulsion model where a stereochemically active lone pair of electrons is involved. The C–Se distances fall in the region 1.89–1.98 Å with Calkyl–Se being longer than the Caryl–Se distances. Compounds containing hydroxyl, carboxyl and amino groups are associated in the solid state through intra- and/or inter-molecular hydrogen bonding, resulting in dimeric64  to infinite65  chains. The stereochemistry of selenium compounds is quite diverse (Table 1.1).66–74 

Figure 1.2

Selenium compounds characterized using X-ray crystallography.

Figure 1.2

Selenium compounds characterized using X-ray crystallography.

Close modal
Table 1.1

Organoselenium compounds with selenium coordination numbers in different oxidation states.66–74 

Oxidation state of seleniumCoordination number of seleniumExamples
One Two  (diorganodiselenides) 
Three 66  
  
Two Two ReSeH (selenols); Re-Se-R′ (diorganoselenides); 
R-Se-X [X=Cl or Br] (seleneyl halides); 
OH (selenenic acid); OR (selenenic acid ester); CN (selenocyanate) 
 
Metal selenolates (e.g. [Pt(SeC4H3N2)2(PPh3)2]67  
Three 68  
Metal selenolates (e.g.)69  
Four Metal selenolates (e.g. [Pd3Cl22-Se,N-SeCH2CH2NMe2)(η3-C3H5)3]70  
Four Two OSeO (selenium dioxide); RNSeNR (selenodiimides) 
Three (pyramidal)  
Four (trigonal bipyramidal) R2SeX2 (X=Cl or Br; R=Me, Ph, etc.),71  PhSeCl3, [Se(OR)4
 
Five 68 ; [PPh4][Se(N3)5]72  
  
Six Four  
Five 73  
Six 74  
Oxidation state of seleniumCoordination number of seleniumExamples
One Two  (diorganodiselenides) 
Three 66  
  
Two Two ReSeH (selenols); Re-Se-R′ (diorganoselenides); 
R-Se-X [X=Cl or Br] (seleneyl halides); 
OH (selenenic acid); OR (selenenic acid ester); CN (selenocyanate) 
 
Metal selenolates (e.g. [Pt(SeC4H3N2)2(PPh3)2]67  
Three 68  
Metal selenolates (e.g.)69  
Four Metal selenolates (e.g. [Pd3Cl22-Se,N-SeCH2CH2NMe2)(η3-C3H5)3]70  
Four Two OSeO (selenium dioxide); RNSeNR (selenodiimides) 
Three (pyramidal)  
Four (trigonal bipyramidal) R2SeX2 (X=Cl or Br; R=Me, Ph, etc.),71  PhSeCl3, [Se(OR)4
 
Five 68 ; [PPh4][Se(N3)5]72  
  
Six Four  
Five 73  
Six 74  

Diorganodiselenides, like other dichalcogenides, have skewed structures in solution and in the solid state, and both the enantiomeric forms display chiral P and M helical configurations (Scheme 1.4a). Racemization of these forms is quite facile due to the low barrier of rotation of the Se–Se bond (e.g. the energy barrier in the cisoid and transoid forms of Ph2Se2 is 8.2 kcal mol−1 and 5.2 kcal mol−1, respectively75 ). The Se–Se distance in diselenides ranges from 2.24 to 2.39 Å and is dependent on the nature of the substituent,16  the bond being shorter for more electronegative R groups (e.g. for Se2Br2 the Se–Se=2.241 Å76 ). Shorter (2.265(1) Å) and quite long (2.974(1) Å) Se⋯Se distances between the two molecular halves of dimeric rectangular dication [RSe]42+ (Scheme 1.4c), obtained by one-electron oxidation of diorganodiselenide by NO+OTF or XeF2/BF3·OEt2, have been reported.77  The dihedral angle (Scheme 1.4b) in diorganodiselenides deviates significantly from the idealized value of 90°, depending on the nature of the organic groups and on the existence of other secondary interactions. In most cases the C–Se–Se–C angle16  lies in the range 70–100°, while intra-molecular Se⋯N interactions (as in [(3,5-Me2C5H2N)2Se2] and [{2-NC5H3(3-CONHPh)}2Se2]78 ) or sterically bulky groups (as in [{(Me3Si)3C}2Se2]79 ) result in the opening of the angle to 180°. Polymorphism in diorganodiselenides is also encountered, and examples include [2-py2Se2]80  and [{2-(3-H2NCOC5H3N)}2Se2].81 

Scheme 1.4

(a) Chiral forms of diselenide; (b) view down the Se–Se bond showing the dihedral angle; and (c) schematic representation of the diselenide cation.

Scheme 1.4

(a) Chiral forms of diselenide; (b) view down the Se–Se bond showing the dihedral angle; and (c) schematic representation of the diselenide cation.

Close modal

A large number of symmetrical and unsymmetrical diorganoselenides (Scheme 1.5) have been structurally characterized. These compounds adopt a V-shaped geometry with C–Se–C angles16  varying in the range 95–104°. Diorganoselenoxides adopt a trigonal pyramidal shape, but considering the role of a stereochemically active lone pair of electrons, structures can be defined as distorted tetrahedral. The Se–O distances are in the range 1.62–1.69 Å and the C–Se–C angles are similar to parent selenides, while the C–Se–O angles lie at ∼102°. These compounds are often associated in the solid state through weak inter-molecular hydrogen C–H⋯O or Se⋯O interactions to give dimers,82  star-shaped hexamers83  or infinite strings.84  The hydrated selenoxides (R2SeO·H2O, misrepresented in older literature as R2Se(OH)2), show extensive hydrogen bonding with water molecules (Se–O⋯H–O).84  The Se–O bond lengths are little influenced by such secondary bonding interactions. The Se–O distances in seleninic acids (RSe(O)OH) are similar to selenoxides; however the Se–OH distance (1.74 Å), being the single bond, is longer.85 

Scheme 1.5

Diorganoselenide, diorganoselenoxide and seleninic acid.

Scheme 1.5

Diorganoselenide, diorganoselenoxide and seleninic acid.

Close modal

Diorganodiselenides are yellow to orange-red, shelf-stable compounds and are important precursors in synthetic chemistry; diphenyldiselenide is the most extensively used reagent. Several synthetic approaches are in practice for the preparation of diorganodiselenides. The most commonly used method is the reaction of Li2Se2 or Na2Se2, prepared in several different ways (Scheme 1.6), with an appropriate alkyl or aryl halide followed by aerial oxidation.86–95  Diazonium salts, in place of an organic halide, can also be used for the synthesis of diaryldiselenides.96  Most of these reactions are quite often accompanied by the formation of selenides (R2Se) in variable amounts, and hence the purification of diselenides is essential.

Scheme 1.6

Synthesis of diorganodiselenides from M2Se2.86–95 

Scheme 1.6

Synthesis of diorganodiselenides from M2Se2.86–95 

Close modal

Sodium borohydride reduces elemental selenium to NaSeH or Na2Se2, depending on the molar ratio of the reactants. Sodium hydrogen selenide (NaSeH), generated either by NaBH4 reduction of selenium90  or by the reaction of H2Se with NaOEt in ethanol,97  has also been used for the synthesis of diselenides. For instance, the reaction of NaSeH with 6-tosyl β-cyclodextrin in phosphate buffer followed by aerial oxidation yields cyclodextrin-based diselenides (Scheme 1.7, I), which shows 4.3-fold higher GPx activity than that of ebselen.98  Other cylcodextrin-based diselenides have also been synthesized and characterized.21 

Another promising approach for the synthesis of various aromatic diselenides has been heteroatom-directed aromatic lithiation.99–101 Ortho deprotonation of the aromatic substrate by alkyllithium reagent, usually nBuLi, followed by treatment with selenium and aerial oxidation results in the corresponding diselenides (Scheme 1.8). A variety of substrates, such as N-substituted benzylamines, 2-phenyloxazolines, 1-dimethylamino naphthalene, 1-bromobenzaldehyde, aromatic Schiff bases, ferrocenes and 3-substituted thiophenes, have been used successfully in these reactions.

Scheme 1.8

Synthesis of diorganodiselenides from ArSeLi.

Scheme 1.8

Synthesis of diorganodiselenides from ArSeLi.

Close modal

Acid (e.g. HCl) and base (e.g. KOH, NaOMe) hydrolysis of selenosulfates (RSeSO3K)48  and selenocyanates (RSeCN),102,103  respectively, has also been employed for the preparation of diselenides (Scheme 1.9).

Scheme 1.9

Preparation of diselenides using selenocyanates.

Scheme 1.9

Preparation of diselenides using selenocyanates.

Close modal

Other, less frequently employed methods for the synthesis of diorganodiselenides include the reduction of selenium with carbon monoxide and aromatic aldehyde as substrates,104  and use of CuO nano-powder as a catalyst in the reaction of selenium in KOH solution with an organic halide (Scheme 1.10).105 

Diorganodiselenides show remarkable redox behaviour. They can conveniently be oxidized to electrophilic states (e.g. RSeX or RSeX3) and reduced to nucleophilic selenolate ions by the cleavage of the Se–Se bond. Cyclic voltammetric measurements of diselenides reveal that reversible electron transfer is typical for selenol/diselenide couples and is more negative than those for the corresponding thiol/disulfide couples.106  Single-electron oxidation results in a radical cation intermediate species (Scheme 1.11).107  Diselenides, like (HOOCCH2CH2Se)2, react with one-electron oxidants (e.g. hydroxyl radicals produced during pulse radiolysis) to give diselenide radical cations with an absorption maximum at 560 nm.108  However, the radical cations with simple alkyl derivatives, [Me2Se2+, dimerize as a rectangular dicationic species, [Me2Se2]22+ by π*–π* interaction with long Se–Se bonds.77 

Scheme 1.11

Formation of radical cations.

Scheme 1.11

Formation of radical cations.

Close modal

Deselenization of diselenides can take place under photolytic or thermolytic conditions. Under photolytic conditions in the presence of tertiary phosphine, they yield the selenides (R2Se) and R3PSe.109  Selenium is extruded from dibenzyldiselenide under photolytic as well as thermolytic conditions.110 

Diorganodiselenides are used as a catalyst in a number of organic transformations.111  For example, dipyridyldiselenide is used as a catalyst in the Staudinger–Vilarrasa reaction between carboxylic acids and azides in the presence of PMe3 at room temperature (Scheme 1.12).112  Diorganodiselenides are versatile synthons for the preparation colloidal semiconductor nano-crystals.113 

Selenols, selenium analogues of alcohols and thiols, are stronger acids than the corresponding thiols (pKa 5.9 and 6.5 for PhSeH and PhSH, respectively). They are readily oxidized by atmospheric oxygen to diselenides and are therefore usually generated in situ for a chemical reaction. There are several methods to prepare selenols (Scheme 1.13);114–117  the general routes for their synthesis are as follows.

  • Reaction of Grignard reagent or organolithium with elemental selenium followed by hydrolysis with dilute acid yields RSeH. The reaction is often accompanied with the formation of selenides, diselenides and H2Se as by-products. For instance, carboraneselenol, B10H11C2SeH, is prepared by the reaction of 1,2-dicarba-closo-dodecaborane with nBuLi in DME followed by treatment with selenium powder and subsequent hydrolysis by HCl.118  In this reaction diselenide is also formed as a by-product.

  • Reaction of organic halides80b,119  or aromatic diazonium bromide120  with NaSeH/Na2Se2 is another common route for the synthesis of selenols. In general, organic bromides and iodides are employed in this reaction.

  • Diselenides, being stable compounds, are reduced conveniently to afford the corresponding selenols. Several reducing agents are used for the reduction of diselenides; among them sodium borohydride121  and hypophosphorus acid (H3PO2) in hydrochloric acid/organic solvents120,122  are common reducing agents. Thiols (such as PhSH, dithiothreitol)123,124  and Bu3SnH125  have also been used for reduction of diselenides, but in these reactions selenenyl sulfides (RSeSR′) and Bu3SnSeAr, respectively, are also formed.

  • Basic hydrolysis or reduction of selenocyanates has been employed for the synthesis of selenols.116,126  Aliphatic and aromatic selenocyanates, RSeCN, which are easily obtained by the reaction of aliphatic halides or aromatic diazonium salts with KSeCN, are reduced by zinc in acidic medium.

  • The reaction of alkylsulfate with potassium selenide and reaction between selenourea and tert-butylmalonodialdehyde119  in refluxing ethanol are other protocols used for the synthesis of selenols.

Scheme 1.13

Preparation of selenols.

Scheme 1.13

Preparation of selenols.

Close modal

Selenols are readily deprotonated in alkaline solution to give selenolate ions. Selenols containing unsaturated/N-heterocyclic rings tautomarize to the corresponding selone (CSe linkage).127,128  The selenol and selone can exist as discrete species, e.g. 2-pridyl selenol and 2-pryridylselone (Scheme 1.14).127 

Scheme 1.14

Selenol–selone tautomerism.

Scheme 1.14

Selenol–selone tautomerism.

Close modal

Selenols and their conjugate bases, selenolates (RSe) have high energy highest occupied molecular orbitals and are weak bases but powerful nucleophiles and react readily with electrophilic inorganic and organic compounds.114,115  Selenols are remarkable reagents for the introduction of organoselenium groups to organic molecules either through addition to carbon–carbon multiple bonds or by reaction with organic halides, carboxylic acid chlorides, epoxides, etc. Selenols undergo addition of the Se–H bond to alkynes to give α,β-unsaturated compounds.129  The non-catalytic (radical or base initiated) addition proceeds non-stereoselectively to give a mixture of anti-Markovnikov products, while palladium-catalyzed reactions result in Markovnikov products (Scheme 1.15).130 

Scheme 1.15

Reactions of selonol with alkynes.

Scheme 1.15

Reactions of selonol with alkynes.

Close modal

Diorganoselenides are the oldest organoselenium compounds, prepared as early as 1836 by Löwig, who described the synthesis of diethylselenium.131  These compounds are the most prevalent organoselenium derivatives and are also called as selenoethers. A myriad symmetrical and unsymmetrical selenides,8a,116,132  which include acyclic alkyl, aryl, cyclic with varying ring sizes,133  functionalized,16,134  macrocyclic,135  bi- and multi-selenium centred (e.g. RSe(CH2)nSeR), have been synthesized. These compounds are extensively used as ligands in coordination and organometallic chemistry11c,128  and as a nucleophile in numerous organic reactions.8a,116 

Although several protocols have been adopted for the synthesis of diorganoselenides, the most commonly employed methods are depicted in Scheme 1.16. The reaction of sodium selenide (Na2Se), generated in several ways, with an organic halide in the appropriate solvent has been used to prepare a wide range of symmetrical as well as functionalized selenides.8a,11c,65a,116,132,134–136  Both symmetrical and unsymmetrical selenides are conveniently synthesized by treatment of selenolate ion with non-activated organic halides (aromatic, hetero-aromatic, vinyl, etc.).14b,65a,137  The selenolate ion is usually generated by reductive cleavage of the Se–Se bond of a diselenide. Sodium borohydride14b  and hydrazine in the presence of NaOH in DMF are the common reducing agents. Diarylselenides can also be obtained by the reaction of selenolates with diazonium compounds.7  Unsymmetrical aromatic selenides have been prepared by the reaction of ArSeX (X=H, Br, CN) with an organolithium compound or a Grignard reagent.

Scheme 1.16

Synthesis of monoselenides.

Scheme 1.16

Synthesis of monoselenides.

Close modal

Several synthetic approaches have been adopted for the preparation of selenides using selenocyanates.138,139  Functionalized selenides are efficiently prepared by ring opening of epoxides, aziridines and related molecules with selenols.116,140  For example, β-hydroxyaryl selenides are conveniently obtained by regio-selective ring opening of epoxide with selenophenol (Scheme 1.17).140  Electrophilic (RSeX; X=Cl or Br) (Scheme 1.17)139,141  and nucleophilic (RSeH) selenium compounds add to alkynes, alkenes and carbonyl compounds to give functionalized selenides. Redox transmetalation of Ag(C5H4N) with red selenium in EtCN at room temperature yields (NH4C5)2Se, but at 50 °C diselenide is formed.142 

Diorganoselenides undergo a variety of reactions. They are readily oxidized by one- and two-electron oxidants. Oxidation of Ph2Se by one-electron oxidants (e.g. OH˙, Br2˙, N3˙) generated on pulse radiolysis, gives radical cation,143  Ph2Se˙+. The redox potential of the Ph2Se˙+/Ph2Se couple is 1.37 V. One-electron oxidation of 1,8-bis(phenylselenyl)naphthalene, napSe2Ph2 by NO[Al(OR)4] (R=C(CF3)3) gives a blue-colored paramagnetic radical cation, [napSe2Ph2+ containing a Se∴Se three-electron σ-bond which dimerizes to a brown diamagnetic species in the solid state.144  Oxidation by two-electron oxidants results in Se(iv) compounds. Oxidation by H2O2 and alkyl halides yields selenoxides (R2SeO) and selenonium salts ([R2SeR′]+X), respectively. Selenides containing α-hydrogen on treatment with strong bases like lithium diisopropylamide (LDA) results in deprotonation to give the corresponding carbanions (RCH–SeAr).

Diorganoselenoxides (R2SeO; R=alkyl or aryl) are among the best-known organoselenium compounds145  and find extensive applications in chemical synthesis as oxygen transfer agents in organic146  and organometallic synthesis147  and as oxygen donor ligands in coordination chemistry.148 

Selenoxides are conveniently obtained by the oxidation of selenides. Several oxidizing agents, such as hydrogen peroxide,149  peroxy acids (e.g. m-chloroperbenzoic acid150 ), ozone, sodium hypochlorite (NaOCl) in DMF151  or tert-butylhypochlorite150  are generally employed for the oxidation of selenides. Alternatively, selenoxides can be prepared by hydrolysis of diorganoselenium dichlorides using alkali metal hydroxides, sodium acetate and silver oxide in aqueous medium. Rearrangement in selenoxides containing protic organic groups (e.g. OH, COOH) may take place during oxidation.152,153  For example oxidation of di(3-hydroxypropyl)selenide with tert-butylhydroperoxide results in to the formation of expected selenoxide, di(3-hydroxypropyl)selenoxide, which readily undergoes intra-molecular dehydration to yield a spiro-selenurane (Scheme 1.18).152  Similarly 3,3′-selenodipropionic acid on oxidation readily yields a dehydrated cyclized product, whereas the homologous 4,4′-selenodibutyric acid and 5,5′-seleno divaleric acid yield corresponding selenoxides.153  Further oxidation of selenoxides is a slow process and requires strong oxidizing agents like peroxy acids. Unsymmetrical selenoxides are chiral molecules and are stable towards pyramidal inversion at room temperature, but racemization is facilitated in the presence of an acid (Scheme 1.19).154 

Scheme 1.18

Cyclization of selenoxide via dehydration.

Scheme 1.18

Cyclization of selenoxide via dehydration.

Close modal
Scheme 1.19

Pyramidal inversion in unsymmetrical selenoxides.

Scheme 1.19

Pyramidal inversion in unsymmetrical selenoxides.

Close modal

Diorganoselenenyl sulfides (RSeSR′) are considered to be important intermediates during catalytic cycle of GPx. The high reactivity of diselenides with thiols has been exploited for the synthesis of selenenyl sulfides.155  This method has been employed successfully for the preparation of slenenyl sulfide glycopeptides156  and selenenyl sulfide-bearing lipids157  which have been characterized using mass spectroscopic techniques. The reaction of ebselen and its analogues with aromatic thiols yields selenenyl sulfides (Scheme 1.20), which exhibit strong Se⋯O intra-molecular interactions.158  These interactions prevent the regeneration of catalytically active selenol species; as a consequence, low catalytic activity of ebselen analogues in the presence of thiols is observed and such species are considered as the dead-end products.158  This type of hypervalent T-shaped selenenyl sulfides, , showing weak intra-molecular Se⋯N (∼2.67 Å) interactions,159  have been isolated by redistribution reactions between diorganodiselenides and bis(diorganophosphinothioyl)disulfanes, . Diorganoselenenyl sulfides have also been synthesized by the reaction of RSeX with the sodium salt of a thiol.

Scheme 1.20

Synthesis of selenenyl sulfides.

Scheme 1.20

Synthesis of selenenyl sulfides.

Close modal

Organoselenium halides find extensive applications as electrophilic reagents to introduce selenium into organic molecules, and are found in +2 (RSeX) and +4 (RSeX3; R2SeX2 and R3SeX) oxidation states. The stability of a particular compound depends on the nature of X as well as the organic group attached to selenium. Compounds in the +4 oxidation state are less stable. For instance, oxidative addition of bromine to R2Se results in to diorganoselenium dibromide, R2SeBr2, which tends to decompose on standing (lose bromine and/or bromoalkanes) and is therefore used in situ for organic synthesis.160  Similarly, PhSeCl3, obtained by the reaction of Ph2Se2 with SO2Cl2 in 1 : 3 ratio in chloroform, is used for selenium insertion in to the α-position of a ketonic substrate.161  The trihalides (RSeX3) upon heating in a vacuum above their melting points decompose to selenenyl halides and halogens. Selenenyl halides are relatively stable and are primarily used as electrophilic reagents for selenenylation.

Selenenyl halides (RSeX) are prepared by the reactions of diorganodiselenides with halogens or halogenating agents such as sulfuryl chloride (Scheme 1.21). The products are isolated in quantitative yields. Selenocyanates (RSeCN) can be cleaved by chlorine or bromine in chloroform solution to yield selenenyl halides.

Scheme 1.21

Synthesis of selenenyl halides.

Scheme 1.21

Synthesis of selenenyl halides.

Close modal

Selenenyl halides have low-lying lowest unoccupied molecular orbitals and are therefore powerful electrophiles. Phenyl selenenyl halides (PhSeX; X=Cl or Br) are the common electrophilic reagents used for selenenylation of olefins and carbonyl compounds.162,163  However, the nucleophilicity of the halide in RSeX often gives rise to side reactions in organic synthesis. Accordingly, several non-halide compounds have been developed which show similar behaviour to RSeX; the trifilate (RSeOTf) being the most preferred reagent. These compounds are isolated by the reaction of RSeX with appropriate silver salts (Scheme 1.22).164–168 

Scheme 1.22

Synthesis of selenenyl compounds.

Scheme 1.22

Synthesis of selenenyl compounds.

Close modal

The reaction of selenium electrophiles with alkenes takes place in a stereo-specific manner and proceeds via a seleniranium ion intermediate. The latter is opened in the presence of a nucleophile to give addition products (Scheme 1.23).163  α-Phenylselenocarbonyl compounds are widely used to give olefins via selenoxide elimination. The 2- and 4-pyridyl seleno group is a better leaving group than the phenyl seleno group in selenoxide elimination (Scheme 1.24).169–171  The pyridylseleno compounds afford enones in excellent yields, even in cases where satisfactory results are not obtained with α-phenylselenocarbonyl compounds.

Scheme 1.24

Synthesis of olefins using selenenyl bromide.

Scheme 1.24

Synthesis of olefins using selenenyl bromide.

Close modal

The selenenyl halides, RSeX (X=Cl or Br), are discrete molecules, but the corresponding iodo compounds exhibit considerable structural diversity. Compounds derived from bulky organic groups172  or aryl groups containing hetero-atoms (O or N) on the pendant arms173,174  usually exist as RSeI with a covalent Se–I bond. The majority of iodo compounds are charge-transfer (CT) species in which the Se–Se bond of the diselenide remains intact. The I2 molecule interacts either with one selenium atom (e.g. Me2Se2·I2, (4-FC6H4)2Se2·I2)175,176  to give a three-coordinate spoke structure or binds with both the selenium atoms to result in a centrosymmetric dimer (e.g. (Ph2Se2·I2)2).177  The electron-donating R groups which increase the basicity of Se in general results in CT compounds.178  A 1 : 1 CT compound containing a covalent Se–I bond, p-ClC6H4SeI·I2 is isolated by the reaction of (p-ClC6H4Se)2 with I2 in a 1 : 3 molar ratio.176  The existence of Se⋯X (X=N, O, S) non-bonding interactions in a number of organoselenenyl halides has been reported by several authors and has been probed by X-ray crystallography, NMR and density functional theory calculations.37 

Selenenic acids (RSeOH) (Scheme 1.25; selenenic (II), seleninic (III) and selenonic (IV) acids) are highly reactive intermediates and are generated during the oxidation of selenols and diselenides. They are postulated in a number of reactions such as selenoxide syn elimination, etc. and are thought to be the active species in the catalytic cycle of GPx. These compounds are highly unstable and undergo disproportionation, possibly involving V and VI intermediates, to the corresponding diselenides and seleninic acids or anhydrides (Scheme 1.26).

The existence of several arylselenenic acids stabilized by the coordination of nitro, carbonyl or amine groups in solution has been reported,179  but in no case has alkylselenenic acid been detected. With bulky aryl groups,180 e.g. 2,4,6-Pri3C6H2 and triptycyl (trip),181  ArSeOH has been characterized using NMR spectroscopy, and even the redox behavior of tripSeOH has been investigated.182  A stable selenenic acid derived from a bowl-shaped organic group, BmtSeOH (Scheme 1.27, VII), has been isolated by the direct oxidation of selenol with H2O2 and structurally characterized. The compound shows remarkable stability both in solution and in the solid state.183 

Hydrolysis of selenenyl halides or the reduction of seleninic acids/anhydrides also yields selenenic acids. The reaction has been used to generate selenenic acids in situ. 2-Nitrobenzene seleninic acid on reduction with NaH2PO2 yields the corresponding selenenic acid.179a  Hydrolysis of selenenyl bromide (VIII) during crystallization leads to the formation of selenenate esters (IX) (Scheme 1.28).184  Oxidation of secondary and tertiary amide based diselenides with hydrogen peroxide has been investigated.185  In these reactions the involvement of selenenic acid has been suggested. In the case of the secondary amide group, rapid cyclization takes place to produce seleneyl amides which on oxidation with excess H2O2 yield seleninic acids. The seleninic acids of tertiary amides undergo further oxidation with an excess of H2O2 to afford selenonic acids (Scheme 1.29). The seleninic acids show intra-molecular Se⋯O interactions.185 

Scheme 1.29

Oxidation of seleninic acids to selenonic acids.

Scheme 1.29

Oxidation of seleninic acids to selenonic acids.

Close modal

Unlike selenenic acids, seleninic and selenonic acids are stable, isolable, colorless and odorless solids. They are used as oxidants in organic synthesis. Both aliphatic and aromatic seleninic acids are obtained by oxidation of diselenides or selenocyanates with concentrated HNO3, 30% H2O2, potassium permanganate in acetic acid, chlorine in aqueous medium (Scheme 1.30). Nitration of aromatic groups can be observed on oxidation of aromatic selenium compounds with HNO3.186  Hydrolysis of organoseleniumtrihalides yields seleninic acids. Isolation of trihalides can be avoided if chlorination or bromination of diselenides is performed in aqueous medium.187  Other oxidants, such as dimethyldioxirane (DMD)181,188  and ozone,189  have also been used for conversion of selenium compounds to seleninic acids. Oxidation of tripSeOH with DMD affords the corresponding seleninic acid, tripSe(O)OH quantitatively.181  Similarly, polyfunctionalseleno esters, such as Se-glucopyranosylphenyl seleno acetate, are oxidized by DMD to seleninic acid.188  Further oxidation of seleninic acid, e.g. PhSe(O)OH, with H2O2 results in peroxyseleninic acids, RSe(O)OOH, which find applications in Baeyer–Villiger oxidation of various carbonyl compounds.190 

Scheme 1.30

Synthesis of seleninic acids.

Scheme 1.30

Synthesis of seleninic acids.

Close modal

Seleninic acids are optically active molecules, although isolation of optically pure seleninic acid is a tedious process due to their facile racemization. Kamigata and co-workers obtained enantiomeric pure forms of seleninic acids by using either a chiral column in medium-pressure liquid chromatography or chiral crystallization (e.g. MeSe(O)OH).75,191 

Oxidation of seleninic acids with strong oxidizing agents, like KMnO4 in aqueous KOH, results into the formation of potassium salts of selenonic acid, RSe(O)2OK. They are strong oxidizing agents and can be reduced to seleninic acids in concentrated HCl.

1.
R. A.
Zingaro
and
W. C.
Cooper
,
Selenium
,
van Nostrand Reinhold Company
,
New York
,
1974
2.
Comasseto
 
J. V.
J. Braz. Chem. Soc.
2010
, vol. 
21
 pg. 
2027
 
3.
Waitkins
 
G. R.
Clark
 
C. W.
Chem. Rev.
1945
, vol. 
36
 pg. 
235
 
4.
Seeback
 
D.
Peleties
 
N.
Angew. Chem., Int. Ed. Engl.
1969
, vol. 
8
 pg. 
450
 
5.
Sharpless
 
K. B.
Lauer
 
R. F.
J. Am. Chem. Soc.
1972
, vol. 
94
 pg. 
7154
 
6.
Back
 
T. G.
Barton
 
D. H. R.
Britten-Kelly
 
M. R.
Guziec, Jr.
 
F. S.
J. Chem. Soc., Perkin Trans. 1
1976
pg. 
2079
 
7.
Organic Selenium Compounds: Their Chemistry and Biology
, ed. D. L. Klayman and W. H. H. Günther,
John Wiley & Sons Inc
.,
Chichester
,
1973
8a.
A.
Krief
,
Selenium
, in
Comprehensive Organometallic Chemistry-II
, ed. E. W. Abel, F. G. A. Stone and G. Wilkinson,
Elsevier
,
Oxford
,
1995
, vol. 11, ch. 13, pp. 515–569
8b.
T.
Wirth
,
Selenium
, in
Comprehensive Organometallic Chemistry-III
, volume ed. P. Knochel, ed. R. H. Crabtree and D. M. P. Mingos,
Elsevier
,
Oxford
,
2007
, vol. 9, ch. 11, pp. 457–499
8c.
The Chemistry of Organic Selenium and Tellurium Compounds
, ed. Z. Rappoport,
John Wiley & Sons, Ltd.
,
2014
9.
Fritzmann
 
J. E.
Z. Anorg. Allg. Chem.
1912
, vol. 
73
 pg. 
239
 
10.
Hope
 
E. G.
Levason
 
W.
Coord. Chem. Rev.
1993
, vol. 
122
 pg. 
109
 
Arnold
 
J.
Prog. Inorg. Chem.
1995
, vol. 
43
 pg. 
353
 
11a.
Karlin
 
K. D.
Arnold
 
J.
Prog. Inorg. Chem.
2007
, vol. 
43
 pg. 
353
 
11b.
Chauhan
 
R. S.
Kedarnath
 
G.
Wadawale
 
A.
Slawin
 
A. M. Z.
Jain
 
V. K.
Dalton Trans.
2013
, vol. 
42
 pg. 
259
 
11c.
Kolay
 
S.
Wadawale
 
A.
Das
 
D.
Kisan
 
H. K.
Sunoj
 
R. B.
Jain
 
V. K.
Dalton Trans.
2013
, vol. 
42
 pg. 
10828
 
12.
Yao
 
Q.
Kinney
 
E. P.
Zheng
 
C.
Org. Lett.
2004
, vol. 
6
 pg. 
2997
 
13.
Kumar
 
A.
Rao
 
G. K.
Saleem
 
F.
Singh
 
A. K.
Dalton Trans.
2012
, vol. 
41
 pg. 
11949
 
14a.
Paluru
 
D. K.
Dey
 
S.
Chaudhari
 
K. R.
Khedkar
 
M. V.
Bhange
 
B. M.
Jain
 
V. K.
Tetrahedron Lett.
2014
, vol. 
55
 pg. 
2953
 
14b.
Paluru
 
D. K.
Dey
 
S.
Wadawale
 
A.
Maity
 
D. K.
Bhuvanesh
 
N.
Jain
 
V. K.
Eur. J. Inorg. Chem.
2015
pg. 
397
 
15a.
Bochmann
 
M.
Chem. Vap. Deposition
1996
, vol. 
2
 pg. 
85
 
15b.
Malik
 
M. A.
Afzaal
 
M.
O'Brien
 
P.
Chem. Rev.
2010
, vol. 
110
 pg. 
4417
 
15c.
Schulz
 
S.
Coord. Chem. Rev.
2015
, vol. 
297–298
 pg. 
49
 
16.
Kedarnath
 
G.
Jain
 
V. K.
Coord. Chem. Rev.
2013
, vol. 
257
 pg. 
1409
 
17a.
Sharma
 
R. K.
Wadawale
 
A.
Kedarnath
 
G.
Manna
 
D.
Ghanty
 
T. K.
Vishwanadh
 
B.
Jain
 
V. K.
Dalton Trans.
2014
, vol. 
43
 pg. 
6525
 
17b.
Tyagi
 
A.
Kedarnath
 
G.
Wadawale
 
A.
Shah
 
A. Y.
Jain
 
V. K.
Vishwanadh
 
B.
RSC Adv.
2016
, vol. 
6
 pg. 
8367
 
18.
Reich
 
H. J.
Hondal
 
R. J.
ACS Chem Biol.
2016
, vol. 
11
 pg. 
821
 
19.
Schwarz
 
K.
Foltz
 
C. M.
J. Am. Chem. Soc.
1957
, vol. 
79
 pg. 
3292
 
20a.
Flohe
 
L.
Günzler
 
W. A.
Schock
 
H. H.
FEBS Lett.
1973
, vol. 
32
 pg. 
132
 
20b.
Rotruck
 
J. T.
Pope
 
A. L.
Ganther
 
H. E.
Swansen
 
A. B.
Hafeman
 
D. G.
Hoekstra
 
W. G.
Science
1973
, vol. 
179
 pg. 
588
 
21.
Huang
 
X.
Liu
 
X.
Luo
 
Q.
Liu
 
J.
Shen
 
J.
Chem. Soc. Rev.
2011
, vol. 
40
 pg. 
1171
 
22.
Sies
 
H.
Masumoto
 
H.
Adv. Pharmacol.
1997
, vol. 
38
 pg. 
229
 
23.
Wirth
 
T.
Angew. Chem., Int. Ed.
2015
, vol. 
54
 pg. 
10074
 
24.
J. E.
Oldfield
,
Selenium World Atlas
,
Selenium-Tellurium Development Association
,
Grimbergen, Belgium
,
1999
25.
Weekley
 
C. M.
Harris
 
H. H.
Chem. Soc. Rev.
2013
, vol. 
42
 pg. 
8870
 
26.
Harthill
 
M.
Biol. Trace Elem. Res.
2011
, vol. 
143
 pg. 
1325
 
27.
Painter
 
E. P.
Chem. Rev.
1941
, vol. 
28
 pg. 
179
 
28.
C.
Reilly
,
Selenium in Food and Health
, 2nd edn,
Springer
,
New York
,
2006
, p. 206
29.
Winkel
 
L. H. E.
Johnson
 
C. A.
Lenz
 
M.
Grundl
 
T.
Leupin
 
O. X.
Amini
 
M.
Charlet
 
L.
Environ. Sci. Technol.
2012
, vol. 
46
 pg. 
571
 
30.
Jukes
 
T. H.
J. Appl. Biochem.
1983
, vol. 
5
 pg. 
233
 
31.
D. M.
Chizhikov
and
V. P.
Shchastlivyi
,
Selenium and Selenides
, (translated from Russian to English by E. M. Eltein),
Collet's Publishers Ltd.
,
London
,
1968
32.
Cernosek
 
Z.
Ruzicka
 
A.
Holubova
 
J.
Cernoskova
 
O. E.
Main Group Met. Chem.
2007
, vol. 
30
 pg. 
231
 
33.
Gillespie
 
R. J.
Passmore
 
J.
Acc. Chem. Res.
1971
, vol. 
4
 pg. 
413
 
34.
Ansari
 
M. A.
Ibers
 
J. A.
Coord. Chem. Rev.
1990
, vol. 
100
 pg. 
223
 
35.
B.
Krebs
,
S.
Bonmann
and
I.
Eidenschink
,
Selenium: Inorganic Chemistry
, in
Encyclopedia of Inorganic Chemistry
, ed. R. B. King,
John Wiley & Sons
,
1994
, vol. 7, pp. 3667–3689
36.
Roof
 
L. C.
Kolis
 
J. W.
Chem. Rev.
1993
, vol. 
93
 pg. 
1037
 
37.
Mukherjee
 
A. J.
Zade
 
S. S.
Singh
 
H. B.
Sunoj
 
R. B.
Chem. Rev.
2010
, vol. 
110
 pg. 
4357
 
38.
D.
Banerjea
,
Inorganic Chemistry - A Modern Treatise
,
Asian Books Pvt. Ltd
,
New Delhi
,
2012
39.
Chivers
 
T.
Laitinen
 
R. S.
Chem. Soc. Rev.
2015
, vol. 
44
 pg. 
1725
 
40.
R. K.
Harris
and
B. E.
Mann
,
NMR and Periodic Table
,
Academic Press
,
London
,
1978
41.
Odom
 
J. D.
Dawson
 
W. H.
Ellis
 
P. D.
J. Am. Chem. Soc.
1979
, vol. 
101
 pg. 
5815
 
42.
Duddeck
 
H.
Prog. Nucl. Magn. Reson. Spectrosc.
1995
, vol. 
27
 pg. 
1
 
43a.
T. M.
Klapötke
and
M.
Broschag
,
Compilation of Reported 77Se NMR Chemical Shifts
,
John Wiley & Sons Inc
.,
New York
,
1996
43b.
Duddeck
 
H.
Annu. Rep. NMR Spectrosc.
2004
, vol. 
52
 pg. 
105
 
43c.
Demko
 
B. A.
Wasylishen
 
R. E.
Prog. Nucl. Magn. Reson. Spectrosc.
2009
, vol. 
54
 (pg. 
208
-
238
)
43d.
A.
Panda
and
H. B.
Singh
,
Chemistry of Organic Selenium and Tellurium Compounds
, ed. Z. Rappoport,
John Wiley & Sons Ltd
,
2014
, vol. 4, pp. 277–445
44.
Dey
 
S.
Kumbhare
 
L. B.
Jain
 
V. K.
Schurr
 
T.
Kaim
 
W.
Klein
 
A.
Belaj
 
F.
Eur. J. Inorg. Chem.
2004
pg. 
4510
 
45.
Llabrès
 
G.
Baiwir
 
M.
Piette
 
J. L.
Christiaens
 
L.
Org. Magn. Reson.
1981
, vol. 
15
 pg. 
152
 
46.
O'Brien
 
D. H.
Dereu
 
N.
Huang
 
C. K.
Irgolic
 
K. J.
Organometallics
1983
, vol. 
2
 pg. 
305
 
47.
Dowd
 
D.
Gettins
 
P.
Magn. Reson. Chem.
1988
, vol. 
26
 pg. 
1
 
48.
Tan
 
K. S.
Arnold
 
A. P.
Rabenstein
 
D. L.
Can. J. Chem.
1988
, vol. 
66
 pg. 
54
 
49a.
Iwaoka
 
M.
Tomoda
 
S.
J. Am. Chem. Soc.
1994
, vol. 
116
 pg. 
2557
 
49b.
Komatsu
 
H.
Iwaoka
 
M.
Tomoda
 
S.
Chem. Commun.
1999
pg. 
205
 
50a.
Iwaoka
 
M.
Tomoda
 
S.
Phosphorus, Sulfur, Silicon Relat. Elem.
2005
, vol. 
180
 pg. 
755
 
50b.
S.
Hayashi
and
W.
Nakanishi
,
Hypervalent chalcogen compounds
, in
Handbook of Chalcogen Chemistry: New perspectives in Sulfur, Selenium and Tellurium
, ed. F. A. Devillanova and W. W. Du Mont, 2nd edn,
RSC Publishing
,
2013
, ch. 12.3
51.
J.
Liu
and
S.
Rozovsky
,
77Se NMR Spectroscopy of selenoproteins
, in
Selenium in Molecular Biology & Human Health
, ed., D. L. Hatfield, et al,
Springer
,
2016
, pp. 187–200
52.
Mobli
 
M.
Morgenstern
 
D.
King
 
G. F.
Alewood
 
P. F.
Muttenthaler
 
M.
Angew. Chem., Int. Ed.
2011
, vol. 
50
 pg. 
11952
 
53.
House
 
K. L.
Dunlap
 
R. B.
Odom
 
J. D.
Wu
 
Z. P.
Hilvert
 
D.
J. Am. Chem. Soc.
1992
, vol. 
114
 pg. 
8573
 
54.
Prabhu
 
P.
Singh
 
B. G.
Noguchi
 
M.
Phadnis
 
P. P.
Jain
 
V. K.
Iwaoka
 
M.
Priyadarsini
 
K. I.
Org. Biomol. Chem.
2014
, vol. 
12
 pg. 
2404
 
55.
McFarlane
 
W.
Rycroft
 
D. S.
Turner
 
C. J.
Bull. Soc. Chim. Belg.
1977
, vol. 
86
 pg. 
457
 
56.
Anderson
 
J. A.
Odom
 
J. D.
Organometallics
1988
, vol. 
7
 pg. 
267
 
57a.
Gombler
 
W.
Magn. Reson. Chem.
1991
, vol. 
29
 pg. 
73
 
57b.
Sorensen
 
A.
Rasmussen
 
B.
Pittelkov
 
M.
J. Org. Chem.
2015
, vol. 
80
 pg. 
3852
 
58a.
Jain
 
V. K.
Kannan
 
S.
Teikink
 
E. R. T.
J. Chem. Res.
1994
pg. 
501
 
58b.
Niksch
 
T.
Görls
 
H.
Friedrich
 
M.
Oilenkaniemi
 
R.
Laitinen
 
R.
Weigand
 
W.
Eur. J. Inorg. Chem.
2010
pg. 
74
 
59.
Johannsen
 
I.
Henriksen
 
L.
Eggert
 
H.
J. Org. Chem.
1986
, vol. 
51
 pg. 
1657
 
60.
Sharma
 
R. K.
Kedarnath
 
G.
Wadawale
 
A.
Betty
 
C. A.
Vishwanadh
 
B.
Jain
 
V. K.
Dalton Trans.
2012
, vol. 
41
 pg. 
12129
 
61a.
Dey
 
S.
Jain
 
V. K.
Verghese
 
B.
J. Organomet. Chem.
2001
, vol. 
623
 pg. 
48
 
61b.
Kumbhare
 
L. B.
Wadawale
 
A. P.
Jain
 
V. K.
Kolay
 
S.
Nethaji
 
M.
J. Organomet. Chem.
2009
, vol. 
694
 pg. 
3892
 
61c.
Vivekananda
 
K. V.
Dey
 
S.
Wadawale
 
A.
Bhuvanesh
 
N.
Jain
 
V. K.
Dalton Trans.
2013
, vol. 
42
 pg. 
14158
 
62.
Dernovics
 
M.
Far
 
J.
Lobinski
 
R.
Metallomics
2009
, vol. 
1
 pg. 
317
 
63a.
Haratake
 
M.
Hongoh
 
M.
Miyauchi
 
M.
Hirakawa
 
R.
Ono
 
M.
Nakayama
 
M.
Inorg. Chem.
2008
, vol. 
47
 pg. 
6273
 
63b.
Yamashita
 
Y.
Yamashita
 
M.
J. Biol. Chem.
2010
, vol. 
285
 pg. 
18134
 
63c.
Schaefer
 
S. A.
Dong
 
M.
Rubenstein
 
R. P.
Wilkie
 
W. A.
Bahnson
 
B. J.
Thorpe
 
C.
Rozovsky
 
S.
J. Mol. Biol.
2013
, vol. 
425
 pg. 
222
 
64.
Dondin
 
K. I.
Berge
 
R. K.
Borve
 
K. J.
Songstad
 
J.
Törnroos
 
K. W.
J. Mol. Struct.
2000
, vol. 
554
 pg. 
149
 
65a.
Hodage
 
A. S.
Prabhu
 
C. P.
Phadnis
 
P. P.
Wadawale
 
A.
Priyadarsini
 
K. I.
Jain
 
V. K.
J. Organomet. Chem.
2012
, vol. 
720
 pg. 
19
 
65b.
Hodage
 
A. S.
Phadnis
 
P. P.
Wadawale
 
A.
Priyadarsini
 
K. I.
Jain
 
V. K.
X-Ray Struct. Anal. Online
2009
, vol. 
25
 pg. 
101
 
66.
Abel
 
E. W.
Khan
 
A. R.
Kite
 
K.
Orrell
 
K. G.
Šbik
 
V.
Cameron
 
T. S.
Cordes
 
R.
J. Chem. Soc., Chem. Commun.
1979
pg. 
713
 
67.
Chauhan
 
R. S.
Sharma
 
R. K.
Kedarnath
 
G.
Cordes
 
D. B.
Slawin
 
A. M. Z.
Jain
 
V. K.
J. Organomet. Chem.
2012
, vol. 
717
 pg. 
180
 
68.
Kulcsar
 
M.
Silvestru
 
A.
Silvestru
 
C.
Drake
 
J. E.
MacDonald
 
C. L. B.
Hursthouse
 
M. E.
Light
 
M. E.
J. Organomet. Chem.
2005
, vol. 
690
 pg. 
3217
 
69.
Kumbhare
 
L. B.
Jain
 
V. K.
Phadnis
 
P. P.
Nethaji
 
M.
J. Organomet. Chem.
2007
, vol. 
692
 pg. 
1546
 
70.
Ghavale
 
N.
Dey
 
S.
Wadawale
 
A.
Jain
 
V. K.
Organometallics
2008
, vol. 
27
 pg. 
3297
 
71a.
Godfrey
 
S. M.
McAuliffe
 
C. A.
Pritchard
 
R. J.
Sarwar
 
S.
J. Chem. Soc., Dalton Trans.
1997
pg. 
1031
 
71b.
Toma
 
A. M.
Nicoara
 
A.
Silvestru
 
A.
Rüffer
 
T.
Lang
 
H.
Mehring
 
M.
J. Organomet. Chem.
2016
, vol. 
810
 pg. 
33
 
72.
Klapötke
 
T. M.
Krumm
 
B.
Scherr
 
M.
Haiges
 
R.
Christe
 
K. O.
Angew. Chem., Int. Ed.
2007
, vol. 
46
 pg. 
8686
 
73.
Petrovic
 
A. G.
Polavarapu
 
P. I.
Drabowicz
 
J.
Zhang
 
Y.
McConnel
 
O. J.
Duddeck
 
H.
Chem. – Eur. J.
2005
, vol. 
11
 pg. 
4257
 
74.
Furukawa
 
N.
Sato
 
S.
Heteroat. Chem.
2002
, vol. 
13
 pg. 
406
 
75.
Kamigata
 
N.
Phosphorus, Sulfur Silicon Relat. Elem.
2005
, vol. 
180
 pg. 
667
 
76.
ElHamdi
 
M.
Poater
 
J.
Bickelhaupt
 
M. F.
Sola
 
M.
Inorg. Chem.
2013
, vol. 
52
 pg. 
2458
 
77a.
Mueller
 
B.
Poleschner
 
H.
Seppelt
 
K.
Dalton Trans.
2008
pg. 
4424
 
77b.
Poleschner
 
H.
Seppelt
 
K.
Angew. Chem., Int. Ed.
2013
, vol. 
52
 pg. 
12838
 
78a.
Dhau
 
J. S.
Singh
 
A.
Dhir
 
R.
J. Organomet. Chem.
2011
, vol. 
696
 pg. 
2008
 
78b.
Prabhu
 
C. P.
Phadnis
 
P. P.
Wadawale
 
A.
Priyadarsini
 
K. I.
Jain
 
V. K.
J. Organomet. Chem.
2012
, vol. 
713
 pg. 
42
 
79.
Wagner
 
I.
Du Mont
 
W. W.
Pohl
 
S.
Saak
 
W.
Chem. Ber.
1990
, vol. 
123
 pg. 
2325
 
80a.
Dunne
 
S.
von Nagy Felsobuki
 
E.
Mackay
 
M.
Acta Crystallogr.
1998
, vol. 
C 54
 pg. 
887
 
80b.
Kienitz
 
C. O.
Thöne
 
C.
Jones
 
P. G.
Inorg. Chem.
1996
, vol. 
35
 pg. 
3990
 
81.
P. P.
Phadnis
,
A.
Kunwar
,
R. K.
Mishra
,
M.
Kumar
,
A.
Wadawale
,
K. I.
Priyadarsini
and
V. K.
Jain
, unpublished results
82.
Filatov
 
A. S.
Block
 
E.
Petrukhina
 
M. A.
Acta Crystallogr.
2005
, vol. 
C 61
 pg. 
o596
 
83.
Klapötke
 
T. M.
Kurmm
 
B.
Mayer
 
P.
Piotrowski
 
H.
Ruscitti
 
O. P.
Z. Naturforsch.
2002
, vol. 
57B
 pg. 
145
 
84.
Beckmann
 
J.
Duthie
 
A.
Z. Anorg. Allg. Chem.
2005
, vol. 
631
 pg. 
1849
 
85.
Klapötke
 
T. M.
Kurmm
 
B.
Polborn
 
K.
Eur. J. Inorg. Chem.
1999
pg. 
1359
 
86.
Brandsma
 
L.
Wijers
 
H. E.
Recl. Trav. Chim. Pays-Bas
1963
, vol. 
82
 pg. 
68
 
87.
Dey
 
S.
Jain
 
V. K.
Chaudhury
 
S.
Knoedler
 
A.
Lissner
 
F.
Kaim
 
W.
J. Chem. Soc., Dalton Trans.
2001
pg. 
723
 
88a.
Bhasin
 
K. K.
Singh
 
J.
J. Organomet. Chem.
2002
, vol. 
658
 pg. 
71
 
88b.
Bhasin
 
K. K.
Arora
 
E.
Kaur
 
K.
Kang
 
S.
Gobel
 
M.
Klapoetke
 
T. M.
Mehta
 
S. K.
Tetrahedron
2009
, vol. 
65
 pg. 
247
 
89.
Li
 
J. Q.
Bao
 
W. L.
Lue
 
P.
Zhau
 
X. J.
Synth. Commun.
1991
, vol. 
21
 pg. 
799
 
90.
Klayman
 
D. L.
Griffin
 
T. S.
J. Am. Chem. Soc.
1973
, vol. 
95
 pg. 
197
 
91.
Bhasin
 
K. K.
Arora
 
E.
Klapoetke
 
T. M.
J. Organomet. Chem.
2011
, vol. 
696
 pg. 
835
 
92.
Gladysz
 
J. A.
Hornby
 
J. L.
Garbe
 
J. E.
J. Org. Chem.
1978
, vol. 
43
 pg. 
1204
 
93.
Hodage
 
A. S.
Phadnis
 
P. P.
Wadawale
 
A.
Priyadarsini
 
K. I.
Jain
 
V. K.
Org. Biomol. Chem.
2011
, vol. 
9
 pg. 
2992
 
94.
Syper
 
L.
Mlochowski
 
J.
Tetrahedron
1988
, vol. 
44
 pg. 
6119
 
95.
Agenas
 
L. B.
Acta Chem. Scand.
1962
, vol. 
16
 pg. 
1809
 
96.
Vafai
 
M.
Renson
 
M.
Bull. Soc. Chim. Belg.
1966
, vol. 
75
 pg. 
145
 
97.
Margolies
 
D. S.
Pittman
 
R. W.
J. Chem. Soc.
1957
pg. 
799
 
98.
Liu
 
J. Q.
Gao
 
S. J.
Luo
 
G. M.
Yan
 
G. L.
Shen
 
J. C.
Biochem. Biophys. Res. Commun.
1998
, vol. 
247
 pg. 
397
 
99.
Nishibayashi
 
Y.
Segawa
 
K.
Singh
 
J. D.
Fukuzawa
 
S.
Ohe
 
K.
Uemura
 
S.
Organometallics
1996
, vol. 
15
 pg. 
370
 
100.
Kaur
 
R.
Singh
 
H. B.
Patel
 
R. P.
J. Chem. Soc., Dalton Trans.
1996
pg. 
2719
 
101.
Mugesh
 
G.
Gingh
 
H. B.
Acc. Chem. Res.
2002
, vol. 
35
 pg. 
226
 
102.
Günther
 
W. H. H.
Mautner
 
H. G.
J. Am. Chem. Soc.
1960
, vol. 
82
 pg. 
2762
 
103.
Ehara
 
H.
Noguchi
 
M.
Sayama
 
S.
Onami
 
T.
J. Chem. Soc., Perkin Trans. 1
2000
pg. 
1429
 
104.
Tan
 
F.
Yu
 
Z.
Lu
 
S.
J. Org. Chem.
2004
, vol. 
69
 pg. 
4520
 
105.
Singh
 
D.
Deobald
 
A. M.
Camargo
 
L. R. S.
Tabarelli
 
G.
Rodrigues
 
O. E. D.
Braga
 
A. L.
Org. Lett.
2010
, vol. 
12
 pg. 
3288
 
106.
Collins
 
C. A.
Fry
 
F. H.
Holme
 
A. L.
Yiakouvaki
 
A.
Al-Qenaei
 
A.
Pourzand
 
C.
Jacob
 
C.
Org. Biomol. Chem.
2005
, vol. 
3
 pg. 
1541
 
107.
Pandey
 
G.
Jayathirtha Rao
 
V.
Bhalerao
 
U. T.
J. Chem. Soc., Chem. Commun.
1989
pg. 
416
 
108a.
Kunwar
 
A.
Mishra
 
B.
Barik
 
A.
Kumbhare
 
L. B.
Pandey
 
R.
Jain
 
V. K.
Priyadarsini
 
K. I.
Chem. Res. Toxicol.
2007
, vol. 
20
 pg. 
1482
 
108b.
Mishra
 
B.
Kumbhare
 
L. B.
Jain
 
V. K.
Priyadarsini
 
K. I.
J. Phys. Chem. B
2008
, vol. 
112
 pg. 
4441
 
109a.
Back
 
T. G.
Krishna
 
M. V.
J. Org. Chem.
1988
, vol. 
53
 pg. 
2533
 
109b.
Ogawa
 
A.
Yokoyama
 
H.
Yokoyama
 
K.
Masawaki
 
T.
Kambe
 
N.
Sonoda
 
N.
J. Org. Chem.
1991
, vol. 
56
 pg. 
5721
 
110.
Chu
 
J. Y. C.
Marsh
 
D. G.
Günther
 
W. H. H.
J. Am. Chem. Soc.
1975
, vol. 
97
 pg. 
4905
 
111.
F. V.
Singh
and
T.
Wirth
, in
Organoselenium Chemistry: Synthesis and Reactions
, ed. T. Wirth,
Wiley VCH Verlag GmbH
,
2012
, pp. 321–360
112.
Brues
 
J.
Martin
 
M.
Urpi
 
F.
Vilarrasa
 
J.
J. Org. Chem.
2009
, vol. 
74
 pg. 
2203
 
113.
Brutchley
 
R. L.
Acc. Chem. Res.
2015
, vol. 
48
 pg. 
2918
 
114.
T. G.
Back
,
Selenium: organoselenium chemistry
, in
Encyclopedia of Inorganic Chemistry
, ed. R. B. King,
John Wiley & Sons, Ltd.
,
1994
, vol. 7, pp. 3690–3700
115.
M.
Iwaoka
,
Nucleophilic selenium
, in
Organoselenium Chemistry: Synthesis and Reactivity
, ed. T. Wirth,
Wiley-VCH Verlag, GmbH
,
2012
, ch. 2, pp. 53–109
116.
S. S.
Zade
and
H. B.
Singh
,
Synthesis of organoselenium compounds
in
The Chemistry of Organic Selenium and Tellurium Compunds
, ed. Z. Rappoport,
John Wiley & Sons Ltd
,
2014
, vol. 4, ch. 1, pp. 1–180
117.
Krief
 
A.
van Wemmed
 
T.
Redon
 
M.
Dumont
 
W.
Delmotte
 
C.
Angew. Chem., Int. Ed.
1999
, vol. 
38
 pg. 
2245
 
118.
Canales
 
S.
Crespo
 
O.
Gimeno
 
M. C.
Jones
 
P. G.
Laguna
 
A.
Romero
 
P.
Dalton Trans.
2003
pg. 
4525
 
119.
Donahue
 
C. J.
Martin
 
V. A.
Schoenfelner
 
B. A.
Kosinski
 
E. C.
Inorg. Chem.
1991
, vol. 
30
 pg. 
1588
 
120a.
Ashaks
 
J.
Bankovsky
 
Yu.
Zoruma
 
D.
Shestakova
 
I.
Domracheva
 
I.
Nesterova
 
A.
Lukevics
 
E.
Chem. Heterocycl. Compd.
2004
, vol. 
40
 pg. 
776
 
120b.
Lukevics
 
E.
Zoruma
 
D.
Ashaks
 
J.
Shestakova
 
I.
Domracheva
 
I.
Bridane
 
V.
Yashchenko
 
E.
Chem. Heterocycl. Compd.
2009
, vol. 
45
 pg. 
182
 
121a.
Sharpless
 
K. B.
Lauer
 
R. F.
J. Am. Chem. Soc.
1973
, vol. 
95
 pg. 
2697
 
121b.
Comasseto
 
J. V.
Ling
 
L. W.
Petragnani
 
N.
Stefani
 
H. A.
Synthesis
1997
pg. 
373
 
121c.
Manna
 
D.
Mugesh
 
G.
Angew. Chem., Int. Ed.
2010
, vol. 
49
 pg. 
9246
 
122.
Metanis
 
N.
Keinan
 
E.
Dawson
 
P. E.
J. Am. Chem. Soc.
2006
, vol. 
128
 pg. 
16684
 
123.
Bhabak
 
K. P.
Mugesh
 
G.
Chem. – Eur. J.
2008
, vol. 
14
 pg. 
8640
 
124.
Yoshida
 
S.
Kumakura
 
F.
Komatsu
 
I.
Arai
 
K.
Onuma
 
Y.
Hojo
 
H.
Singh
 
B. G.
Priyadarsini
 
K. I.
Iwaoka
 
M.
Angew. Chem., Int. Ed.
2011
, vol. 
50
 pg. 
2125
 
125.
Crich
 
D.
Hwang
 
J. T.
Gastaldi
 
S.
Recupero
 
F.
Wink
 
D. J.
J. Org. Chem.
1999
, vol. 
64
 pg. 
2877
 
126.
Gosselck
 
J.
Chem. Ber.
1958
, vol. 
91
 pg. 
2345
 
127.
Laube
 
J.
Jäger
 
S.
Thöne
 
C.
Eur. J. Inorg. Chem.
2001
pg. 
1983
 
128a.
Landry
 
V. K.
Minoura
 
M.
Pang
 
K.
Buccella
 
D.
Kelly
 
B. V.
Perkin
 
G.
J. Am. Chem. Soc.
2006
, vol. 
128
 pg. 
12490
 
128b.
Guziec
 
L. J.
Guziec Jr.
 
F. S.
J. Org. Chem.
1994
, vol. 
59
 pg. 
4691
 
129.
Perkin
 
G.
Lenardo
 
E. J.
Jacob
 
R. G.
Panatieri
 
R. B.
Chem. Rev.
2009
, vol. 
109
 pg. 
1277
 
130a.
Beletskaya
 
I. P.
Ananikov
 
V. P.
Pure Appl. Chem.
2007
, vol. 
79
 pg. 
1041
 
130b.
Ananikov
 
V. P.
Orlov
 
N. V.
Zalesskiy
 
S. S.
Beletskaya
 
I. P.
Khrustalev
 
V. N.
Morokuma
 
K.
Musaev
 
D. G.
J. Am. Chem. Soc.
2012
, vol. 
134
 pg. 
6637
 
131.
Löwig
 
C. J.
Pogg. Ann.
1836
, vol. 
37
 pg. 
552
 
132.
M.
Renson
,
The Chemistry of Organic Selenium and Tellurium Compounds
, ed. S. Patai and Z. Rappoport,
Wiley
,
Chicheter
,
1987
, vol. 1, ch. 13
133a.
Elsherbini
 
M.
Hamama
 
W. S.
Zoorob
 
H. H.
Coord. Chem. Rev.
2016
, vol. 
312
 pg. 
149
 
133b.
Elsherbini
 
M.
Hamama
 
W. S.
Zoorob
 
H. H.
Coord. Chem. Rev.
2017
, vol. 
330
 pg. 
110
 
134.
Milton
 
M. D.
Khan
 
S.
Sigh
 
J. D.
Mishra
 
V.
Khandelwal
 
B. L.
Tetrahedron Lett.
2005
, vol. 
46
 pg. 
755
 
135.
Panda
 
A.
Coord. Chem. Rev.
2009
, vol. 
253
 pg. 
1056
 
136.
Murray
 
S. G.
Hartley
 
F. R.
Chem. Rev.
1981
, vol. 
81
 pg. 
365
 
Levason
 
W.
Orchad
 
S. D.
Reid
 
G.
Coord. Chem. Rev.
2002
, vol. 
225
 pg. 
159
 
137.
Bhalla
 
A.
Nagpal
 
Y.
Kumar
 
R.
Mehta
 
S. K.
Bhasin
 
K. K.
Bari
 
S. S.
J. Organomet. Chem.
2009
, vol. 
694
 pg. 
179
 
138.
Clive
 
D. L. J.
Aldrichimica Acta
1978
, vol. 
11
 pg. 
43
 
139.
Andrade
 
L. H.
Silva
 
A. V.
Milani
 
P.
Koszelewski
 
D.
Kroutil
 
W.
Org. Biomol. Chem.
2010
, vol. 
8
 pg. 
2043
 
140.
Berlin
 
S.
Ericsson
 
C.
Engman
 
L.
Org. Lett.
2002
, vol. 
4
 pg. 
3
 
141.
Liotta
 
D.
Acc. Chem. Res.
1984
, vol. 
17
 pg. 
28
 
142.
Aboulkacem
 
S.
Naumann
 
D.
Tyrra
 
W.
Patenburg
 
I.
Organometallics
2012
, vol. 
31
 pg. 
1559
 
143.
Engman
 
L.
Lind
 
J.
Merenyi
 
G.
J. Phys. Chem.
1994
, vol. 
98
 pg. 
3174
 
144.
Zhang
 
S.
Wang
 
X.
Su
 
Y.
Qiu
 
Y.
Zhang
 
Z.
Wang
 
X.
Nat. Commun.
2014
145.
Krafft
 
F.
Vorster
 
W.
Chem. Ber.
1893
, vol. 
26
 pg. 
2813
 
146.
Ariyoshi
 
A.
Aso
 
Y.
Otsubo
 
T.
Ogura
 
F.
Chem. Lett.
1984
pg. 
891
 
147.
Kelly
 
A. M.
Rosini
 
G. P.
Goldman
 
A. S.
J. Am. Chem. Soc.
1997
, vol. 
119
 pg. 
6115
 
148.
Dikarev
 
E. V.
Petrukhina
 
M. A.
Li
 
X.
Bock
 
E.
Inorg. Chem.
2003
, vol. 
42
 pg. 
1966
 
149.
Krief
 
A.
Destree
 
A.
Durisotti
 
V.
Morean
 
N.
Smal
 
C.
Colaux-Castillo
 
C.
Chem. Commun.
2002
pg. 
1558
 
150.
Khurana
 
J. M.
Kandpal
 
B. M.
Chauhan
 
Y. K.
Phosphorus, Sulfur Silicon Relat. Elem.
2003
, vol. 
178
 pg. 
1369
 
151.
Sama
 
T.
Shimizu
 
T.
Hirabayashi
 
K.
Kamigata
 
N.
Heteroat. Chem.
2007
, vol. 
18
 pg. 
301
 
152.
Back
 
T. G.
Moussa
 
Z.
Parvez
 
M.
Angew. Chem., Int. Ed.
2004
, vol. 
43
 pg. 
1268
 
153.
Agenäs
 
L. B.
Lindgren
 
G.
Acta Chem. Scand.
1970
, vol. 
24
 pg. 
3301
 
154a.
Shimizu
 
T.
Kikuchi
 
K.
Ishikawa
 
Y.
Ikemoto
 
I.
Kobayashi
 
M.
Kamigata
 
N.
J. Chem. Soc., Perkin Trans. 1
1989
pg. 
597
 
154b.
Davis
 
F. A.
Billmers
 
J. M.
Stringer
 
O. D.
Tetrahedron Lett.
1993
, vol. 
24
 pg. 
3191
 
155.
Wessjohann
 
L. A.
Schneider
 
A.
Abbas
 
M.
Brandt
 
W.
Biol. Chem.
2007
, vol. 
338
 pg. 
997
 
156a.
Gamblin
 
D. P.
Garnier
 
P.
van Kasteren
 
S.
Oldham
 
N. J.
Fairbanks
 
A. J.
Davis
 
B. G.
Angew. Chem., Int. Ed.
2004
, vol. 
43
 pg. 
828
 
156b.
Boutureira
 
O.
Bernardes
 
G. J. L.
Gonzalez
 
M. F.
Anthony
 
D. C.
Davies
 
D. G.
Angew. Chem., Int. Ed.
2012
, vol. 
51
 pg. 
1432
 
157.
Haratake
 
M.
Tachibana
 
Y.
Emaya
 
Y.
Yoshida
 
S.
Fuchigami
 
T.
Nakayama
 
M.
ACS Omega
2016
, vol. 
1
 pg. 
58
 
158.
Bhabak
 
K. P.
Mugesh
 
G.
Chem. – Eur. J.
2007
, vol. 
13
 pg. 
4594
 
159.
Duhamel
 
E.
Pöllnitz
 
A.
Stegarescu
 
A.
Silvestru
 
A.
Z. Anorg. Allg. Chem.
2011
, vol. 
637
 pg. 
1355
 
160.
Kumar
 
S.
Helt
 
J. C. P.
Autschbach
 
J.
Detty
 
M. R.
Organometallics
2009
, vol. 
28
 pg. 
3426
 
161.
Engman
 
L.
Tetrahedron Lett.
1985
, vol. 
26
 pg. 
6385
 
162.
Holzle
 
G.
Jenny
 
W.
Helv. Chim. Acta
1958
, vol. 
41
 pg. 
594
 
163.
C.
Santi
and
S.
Santoro
,
Electrophilic selenium
, in
Organoselenium Chemistry: Synthesis and Reactivity
, ed. T. Wirth,
Wiley-VCH Verlag, GmbH
,
2012
, ch. 1, pp. 1–51
164.
Jackson
 
W. P.
Ley
 
S. V.
Whittle
 
A. J.
J. Chem. Soc., Chem. Commun.
1980
pg. 
1173
 
165.
Davis
 
F. A.
Zhou
 
R.
Sankar
 
L. G.
Tetrahedron Lett.
1990
, vol. 
31
 pg. 
1653
 
166.
Back
 
T. G.
Murlidharan
 
K. R.
J. Org. Chem.
1991
, vol. 
56
 pg. 
2781
 
167.
Murata
 
S.
Suzuki
 
T.
Tetrahedron Lett.
1987
, vol. 
28
 pg. 
4415
 
168.
Lapkin
 
I. I.
Dedugov
 
A. N.
Pavlova
 
N. N.
Zh. Org. Khim.
1985
, vol. 
21
 pg. 
345
 
169.
Toshimitsu
 
A.
Owada
 
H.
Terao
 
K.
Uemura
 
S.
Okano
 
M.
J. Org. Chem.
1984
, vol. 
49
 pg. 
3796
 
170.
Boduszek
 
B.
Gancarz
 
R.
J. Prakt. Chem.
1996
, vol. 
338
 pg. 
186
 
171.
Andreou
 
T.
Bures
 
J.
Vilarrasa
 
J.
Tetrahedron Lett.
2010
, vol. 
51
 pg. 
1863
 
172a.
du Mont
 
W. W.
Kubiniok
 
S.
Peters
 
K.
von Schnering
 
H. G.
Angew. Chem., Int. Ed.
1987
, vol. 
26
 pg. 
780
 
172b.
du Mont
 
W. W.
Marlens
 
A.
Pohl
 
S.
Saak
 
W.
Inorg. Chem.
1990
, vol. 
29
 pg. 
4847
 
172c.
Goto
 
K.
Sonoda
 
D.
Simada
 
K.
Sare
 
S.
Kawashima
 
T.
Angew. Chem., Int. Ed.
2010
, vol. 
49
 pg. 
545
 
173.
Kandasamy
 
K.
Kumar
 
S.
Singh
 
H. B.
Butcher
 
R. J.
Holman
 
K. T.
Eur. J. Inorg. Chem.
2004
pg. 
1014
 
174.
Mugesh
 
G.
Singh
 
H. B.
Butcher
 
R. J.
Tetrahedron: Asymmetry
1999
, vol. 
10
 pg. 
237
 
175.
Mueller
 
B.
Takaluoma
 
T. T.
Laitinen
 
R. S.
Seppelt
 
K.
Eur. J. Inorg. Chem.
2011
pg. 
4970
 
176.
Barnes
 
N. A.
Godfrey
 
S. M.
Hughes
 
J.
Khan
 
R. Z.
Mushtaq
 
I.
Ollerenshaw
 
R. T. A.
Pritchard
 
R. G.
Sarwar
 
S.
Dalton Trans.
2013
, vol. 
42
 pg. 
2735
 
177.
Kubniok
 
S.
du Mont
 
W. W.
Pohl
 
S.
Saak
 
W.
Angew. Chem., Int. Ed.
1988
, vol. 
27
 pg. 
431
 
178.
Kaltsoyannis
 
N.
J. Chem. Soc., Dalton Trans.
1997
pg. 
4759
 
179a.
Rheinboldt
 
H.
Giesbrecht
 
E.
Chem. Ber.
1955
, vol. 
88
 pg. 
1974
 
179b.
Jenny
 
W.
Helv. Chim. Acta
1958
, vol. 
41
 pg. 
317
 
179c.
Reich
 
H.
Hoeger
 
C. A.
Willis, Jr.
 
W. W.
J. Am. Chem. Soc.
1982
, vol. 
104
 pg. 
2936
 
180.
Reich
 
H. J.
Jasperse
 
C. P.
J. Org. Chem.
1988
, vol. 
53
 pg. 
2389
 
181.
Ishii
 
A.
Matsubayashi
 
S.
Takahashi
 
T.
Nakayama
 
J.
J. Org. Chem.
1999
, vol. 
64
 pg. 
1084
 
182.
Zielinski
 
Z.
Presseau
 
N.
Amorati
 
R.
Valgimigli
 
L.
Pratt
 
D. A.
J. Am. Chem. Soc.
2014
, vol. 
136
 pg. 
1570
 
183.
Goto
 
K.
Nagahara
 
M.
Mizushima
 
T.
Shimada
 
K.
Kawashima
 
T.
Okazaki
 
R.
Org. Lett.
2001
, vol. 
3
 pg. 
3569
 
184.
Selvakumar
 
K.
Singh
 
H. B.
Butcher
 
R. J.
Chem. – Eur. J.
2010
, vol. 
16
 pg. 
10576
 
185a.
Bhabak
 
K. P.
Mugesh
 
G.
Chem. – Asian J.
2009
, vol. 
4
 pg. 
974
 
185b.
Bhabak
 
K. P.
Mugesh
 
G.
Chem. – Eur. J.
2009
, vol. 
15
 pg. 
9846
 
186.
Kozlov
 
V. V.
Suvorova
 
S. E.
Zh. Obshch. Khim.
1961
, vol. 
31
 pg. 
3034
 
187.
Pichat
 
L.
Herbert
 
M.
Thiers
 
M.
Tetrahedron
1961
, vol. 
12
 pg. 
1
 
188.
Abdo
 
M.
Knapp
 
S.
J. Am. Chem.Soc.
2008
, vol. 
130
 pg. 
9234
 
189.
Shimizu
 
T.
Nakashima
 
Y.
Watanabe
 
I.
Hirabayashi
 
K.
Kamigata
 
N.
J. Chem. Soc., Perkin Trans. 1
2002
pg. 
2151
 
190a.
Brink
 
G.
Vis
 
J. M.
Arends
 
I. W. C. E.
Sheldon
 
R. A.
J. Org. Chem.
2001
, vol. 
66
 pg. 
2429
 
190b.
Crich
 
D.
Zou
 
Y.
J. Org. Chem.
2005
, vol. 
70
 pg. 
3309
 
191.
Nakashima
 
Y.
Shimizu
 
T.
Hirabayashi
 
K.
Yasui
 
M.
Nakazato
 
M.
Iwasaki
 
F.
Kamigata
 
N.
Bull. Chem. Soc. Jpn.
2005
, vol. 
78
 pg. 
710
 
Close Modal

or Create an Account

Close Modal
Close Modal