Skip to Main Content
Skip Nav Destination

This chapter sets the scene for the volume. It considers briefly the major healthcare challenges facing mankind in the 21st century, and then surveys the families of inorganic materials that have been explored in research to overcome these.

Over many centuries the scientific community has developed manifold strategies to protect and prolong the quality of human life. Nevertheless, there remain many unresolved healthcare challenges facing mankind. Cardiovascular diseases, chronic respiratory diseases, viral and bacterial infections, cancer, and diabetes are responsible for many deaths each year.1  Cancer caused 9.6 million deaths worldwide in 2018,2  and malaria claimed 409 000 deaths in the year 2019.3  Pandemics such as COVID-19 still cause immense damage to human health and wellbeing. At the time of writing, more than 2.5 million people have lost their lives to COVID-19, and many more have lost their livelihoods as COVID has devastated economies around the world. The effects of disease are not confined to adults and the elderly, but also affect children. For example, more than one third of all deaths in low-income countries are among children younger than 15 years. These deaths are due primarily to respiratory infections, diarrheal diseases, malaria, AIDS, and birth complications.

There are a range of types of intervention which can be used to reduce the burden of disease. One is vaccination, in which the body's immune system is ‘trained’ to recognise and respond to a pathogenic species before an infection (so-called prophylaxis). If a patient is already suffering from a disease (infectious or otherwise), then therapy is required to ameliorate their symptoms and control and/or halt the progression of disease. For the latter, we administer a drug, an entity capable of triggering a pharmacological response in the body. Although this is conceptually simple, delivering the correct dose to the affected part of the body at the right time is hugely challenging. The manufacture of effective medicines is thus still an area attracting significant global research interest. Our ability to effectively treat disease is greatly enhanced by diagnostic and imaging technologies, which allow physicians to determine exactly what is wrong with the patient. Ideally diagnosis would be conducted in a non-invasive manner, but this is not always possible at present. Increasingly, researchers are exploring so-called theranostics, formulations which combine a diagnostic or imaging agent and a drug. These can enable the progression of a patient's disease to be followed at the same time as it is treated, helping to optimise the dosage regimen and ensure effective outcomes without adverse side effects.

Around one third to one half of the world had essential health services coverage in 2017. However, health services are often lacking in low- and middle-income countries.4  This encourages the development of low cost and long shelf-life interventions which can be provided in low-resource environments. There is also a great need to develop materials that are able to deliver a therapeutic payload in a precisely targeted fashion, to avoid off-target side effects. Inorganic materials have the potential to help overcome both these issues. However, developing biocompatible and biodegradable inorganic materials is a challenge which remains to be addressed in many cases. The introduction of a foreign object into the human body could lead to unpredictable side effects and/or toxicity. In addition, the immune system may be hostile towards unfamiliar materials and could initiate a defence mechanism leading to side effects or the rejection of the construct. Alternatively, long-term exposure to a drug might result in resistance and a lack of therapeutic efficacy. The key requirements and challenges of a therapeutic intervention are presented in Figure 1.1.

Figure 1.1

The key requirements (left) and challenges (right) encountered during development of therapeutic interventions.

Figure 1.1

The key requirements (left) and challenges (right) encountered during development of therapeutic interventions.

Close modal

Inorganic materials provide a diversity of tools to engineer solutions to current challenges in biomedicine. While biocompatibility can be a problem, inorganic materials are widespread in nature and many are endogenous to the human body: for instance, calcium-based materials are found in bones and teeth. This offers a wealth of opportunities to develop multifunctional and safe therapeutic interventions. Inorganic materials have been proven to have potential for therapeutics, diagnostics, and drug delivery. For example, inorganic nanoparticles are key to signal generation in techniques like magnetic resonance imaging5  and positron emission tomography.6  Therapeutic strategies using, for example, gold- or iron-based materials have been successfully explored as advanced formulations to treat cancer.7  Inorganic drug delivery systems have also been established to target pathological tissues, for tissue restoration, wound healing, and vaccination. Underpinning all of these innovations are some key families of inorganic materials, and we introduce these briefly in the following sections.

A number of noble metals have been explored in biomedicine, mainly as pure metal nanoparticles. Gold-based materials, especially colloidal gold nanoparticles, are simple to prepare, and have easily manipulated surface chemistry and high stability. These, together with their surface plasmon resonance properties and biocompatibility, have led to a wide range of potential applications.8,9  Gold nanoparticles show varied properties depending on their morphology and size, and can be fabricated with a range of shapes including spheres,10  rods,11  and star-shaped particles (Figure 1.2).12  They have been studied as diagnostic tools,13  vaccine delivery systems,14  drug carriers,15  theranostic systems,16  and photothermal therapeutics.17 

Figure 1.2

Schematic representation of key types of inorganic biomaterials. Gold nanoparticles reproduced from ref. 79 with permission from Elsevier, copyright 2014. MOFs, TMDCs, and LDHs reproduced from ref. 80 with permission from American Chemical Society, copyright 2015. Quantum dots and carbon nanotubes reproduced from ref. 81, https://doi.org/10.1080/21691401.2019.1687501, under the terms of the CC BY 4.0 license, http://creativecommons.org/licenses/by/4.0/.

Figure 1.2

Schematic representation of key types of inorganic biomaterials. Gold nanoparticles reproduced from ref. 79 with permission from Elsevier, copyright 2014. MOFs, TMDCs, and LDHs reproduced from ref. 80 with permission from American Chemical Society, copyright 2015. Quantum dots and carbon nanotubes reproduced from ref. 81, https://doi.org/10.1080/21691401.2019.1687501, under the terms of the CC BY 4.0 license, http://creativecommons.org/licenses/by/4.0/.

Close modal

Silver nanoparticles have been similarly widely explored, and are particularly known for their antibacterial properties. This means they can be used, for instance, to solve problems of infections with scaffolds and implants.18,19  Silver-based biomaterials have also shown promise in wound healing and reducing inflammation and scars.20 

Nanosized particles of magnetic elements, such as iron, nickel, cobalt, and their oxides, show superparamagnetism and high magnetic flux density, which endows them with applications in magnetic resonance imaging (MRI), targeted drug delivery, and theranostics.21,22  Other applications include bone repair23  and phototherapy.24 

Quantum dots (QDs) are semiconductor nanomaterials that can absorb broad-spectrum light and emit signals of a specific wavelength (Figure 1.2).25  They are hence potentially potent materials for biomedicine, but their applications in this regard have faced obstacles due to high toxicity, low stability, and difficulty in surface modification.26  However, recent developments have begun to overcome these limitations and QDs have thus been proposed to have potential for both imaging and theranostics.27–30 

Carbon-based materials have attracted attention in the biomedical field by dint of their durability, high rate of biological distribution, and electrical and optical properties.31  Materials explored include graphene, graphene oxide, carbon nanotubes, fullerenes, and others (Figure 1.2).32  Graphene is a hydrophilic 2D single carbon layer derived from graphite.33  Through oxidation, graphene oxide can be generated.34  Graphene and graphene oxide have been explored in drug delivery,35,36  biosensing and gene delivery,37  and cancer therapy.38 

Carbon nanotubes are hollow structures comprising carbon atoms in the form of a single-walled tube or multiple-walled cylinders. Their structure allows thermal and electrical conductivity as well as giving high mechanical strength.39,40  Carbon nanotubes show high surface area, allow facile surface functionalisation, and have high stability. All of these characteristics render them potentially useful as drug delivery systems41,42  and biosensors.43,44  They also have osteogenic activity, allowing their application in bone implants.45  However, it should be noted that toxicity is a matter of concern, especially for graphene and its oxide.46,47 

Layered double hydroxides (LDHs) represents a class of layered materials held together by electrostatic attractions. They have the general formula [M1−x2+ M′x3+(OH)2]x+Ax/nn·zH2O, where M denotes divalent cations (e.g. Mg2+, Co2+, Mn2+), M′ trivalent metal ions (e.g. Fe3+, Al3+), and An charge-balancing anions such as NO3, Cl, and CO32− (Figure 1.2).48,49  LDHs’ –OH groups provide a pH-responsive system that can degrade in an acidic medium to release a drug cargo. The positive charge of the LDH surface enhances the particles’ interaction with biological membranes, and hence facilitates intracellular delivery.50,51  LDHs have been explored in various biomedical applications, including cancer therapy, gene delivery, diagnosis, implants, and scaffolds.49 

Transition metal dichalcogenides (TMDCs) are described by the formula MX2. Transition metal atoms from groups 4–6 in the periodic table (M = Ti, Zr, Hf, etc.) are coordinated by chalcogen elements (X = S, Se, or Te) to form two-dimensional layered materials (Figure 1.2).52,53  A wide range of TMDC formulations can be obtained through variation of the composition.53  TMDCs show several promising properties, including a generally high surface area-to-volume ratio, particularly when the particles are nanosized. This allows a high drug loading to be achieved. In addition, the optical properties of TMDCs facilitate their application in photo-responsive therapy and optical biosensors.54  They can be used to convert near-infrared light to heat, and thus for photothermal treatments and photoacoustic imaging.55,56  TMDCs constructed from elements of high atomic number can be used as a contrast agent for computed tomography.57  They have hence attracted significant attention for gene and drug delivery, bioimaging, and other applications in biomedicine.56–59  However, the in vivo safety of TMDCs is still a matter of concern, and to date only MoS2, WS2, and WSe2 have been tested in vitro and in vivo for their toxicological effects.60–62 

Silica (Si–O–Si) framework materials can be readily formed via condensation reactions, and a range of templates can be used to generate systems with a variety of particle shapes, sizes and porosities (see Figure 1.2).63–65  The high surface area of silica-based materials, their easily tuneable pore size, biocompatibility, high stability and dispersibility, osteostimulative properties, and easily functionalised surfaces facilitate a wide range of biomedical applications.66,67  For instance, they have been used as drug delivery systems,68  gene delivery systems,69  scaffolds for bone tissue engineering,67  multifunctional theranostics70  and formulations able to respond to changes in pH71  or temperature,72  to ultrasound,73  or other stimuli.74 

Metal–organic frameworks (MOFs) are composed of metal centres connected by organic bridging ligands (Figure 1.2). This renders them a hugely versatile family of materials. An enormously diverse range of ligands and metals can be used to construct the framework, resulting in tuneable porosity and the potential for surface optimisation and functionalisation.75  MOFs can be loaded with a drug cargo, and particles prepared with tuneable size, biocompatibility, and biodegradability.76  MOFs have thus been explored in cancer therapy77  and multimodal bioimaging,78 inter alia.

The remainder of this volume will consider in detail the potential of inorganic materials in biomedicine. Chapter 2 will discuss inorganic material based drug delivery systems, while Chapter 3 is focused on imaging. Chapter 4 considers diagnostic and theranostic applications of inorganics, and Chapter 5 elucidates the use of inorganics for hard tissue regeneration. Finally, Chapter 6 explores the use of inorganics in vaccine formulations.

1.
World Health Organization
,
World Health Statistics 2020: Monitoring Health for the SDGs, Sustainable Development Goals [Internet]
,
2020
2.
Li
 
Y.
Wu
 
J.
Williams
 
G. R.
Niu
 
S.
Zhou
 
J.
Yang
 
Y.
Zhang
 
X.
Fu
 
Z.
Li
 
D.
Zhu
 
L.-M.
Synergistic Chemo-Photothermal Suppression of Cancer by Melanin Decorated MoOx Nanosheets
ACS Appl. Bio Mater.
2019
, vol. 
2
 
10
(pg. 
4356
-
4366
)
3.
World Health Organization
,
World Malaria Report 2020: 20 Years of Global Progress and Challenges
,
2020
4.
World Health Organization
,
Primary Health Care on the Road to Universal Health Coverage: 2019 Monitoring Report: Executive Summary
,
World Health Organization
,
2019
5.
King
 
A. M.
Bray
 
C.
Hall
 
S. C.
Bear
 
J. C.
Bogart
 
L. K.
Perrier
 
S.
Davies
 
G.-L.
Exploring precision polymers to fine-tune magnetic resonance imaging properties of iron oxide nanoparticles
J. Colloid Interface Sci.
2020
, vol. 
579
 (pg. 
401
-
411
)
6.
Choi
 
J. S.
Park
 
J. C.
Nah
 
H.
Woo
 
S.
Oh
 
J.
Kim
 
K. M.
Cheon
 
G. J.
Chang
 
Y.
Yoo
 
J.
Cheon
 
J.
A hybrid nanoparticle probe for dual-modality positron emission tomography and magnetic resonance imaging
Angew. Chem.
2008
, vol. 
120
 
33
(pg. 
6355
-
6358
)
7.
Laurent
 
S.
Dutz
 
S.
Häfeli
 
U. O.
Mahmoudi
 
M.
Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles
Adv. Colloid Interface Sci.
2011
, vol. 
166
 
1–2
(pg. 
8
-
23
)
8.
Daniel
 
M.-C.
Astruc
 
D.
Gold Nanoparticles:  Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology
Chem. Rev.
2004
, vol. 
104
 
1
(pg. 
293
-
346
)
9.
Daraee
 
H.
Eatemadi
 
A.
Abbasi
 
E.
Fekri Aval
 
S.
Kouhi
 
M.
Akbarzadeh
 
A.
Application of gold nanoparticles in biomedical and drug delivery
Artif. Cells, Nanomed., Biotechnol.
2016
, vol. 
44
 
1
(pg. 
410
-
422
)
10.
Huang
 
X.
Qian
 
W.
El-Sayed
 
I. H.
El-Sayed
 
M. A.
The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy
Lasers Surg. Med.
2007
, vol. 
39
 
9
(pg. 
747
-
753
)
11.
Vieira
 
S.
Vial
 
S.
Maia
 
F. R.
Carvalho
 
M.
Reis
 
R. L.
Granja
 
P. L.
Oliveira
 
J. M.
Gellan gum-coated gold nanorods: an intracellular nanosystem for bone tissue engineering
RSC Adv.
2015
, vol. 
5
 
95
(pg. 
77996
-
78005
)
12.
Yuan
 
H.
Khoury
 
C. G.
Wilson
 
C. M.
Grant
 
G. A.
Bennett
 
A. J.
Vo-Dinh
 
T.
In vivo particle tracking and photothermal ablation using plasmon-resonant gold nanostars
Nanomedicine
2012
, vol. 
8
 
8
(pg. 
1355
-
1363
)
13.
Beik
 
J.
Jafariyan
 
M.
Montazerabadi
 
A.
Ghadimi-Daresajini
 
A.
Tarighi
 
P.
Mahmoudabadi
 
A.
Ghaznavi
 
H.
Shakeri-Zadeh
 
A.
The benefits of folic acid-modified gold nanoparticles in CT-based molecular imaging: radiation dose reduction and image contrast enhancement
Artif. Cells, Nanomed., Biotechnol.
2018
, vol. 
46
 
8
(pg. 
1993
-
2001
)
14.
Quach
 
Q. H.
Ang
 
S. K.
Chu
 
J. J.
Kah
 
J. C. Y.
Size-dependent neutralizing activity of gold nanoparticle-based subunit vaccine against dengue virus
Acta Biomater.
2018
, vol. 
78
 (pg. 
224
-
235
)
15.
Du
 
Y.
Xia
 
L.
Jo
 
A.
Davis
 
R. M.
Bissel
 
P.
Ehrich
 
M. F.
Kingston
 
D. G. I.
Synthesis and Evaluation of Doxorubicin-Loaded Gold Nanoparticles for Tumor-Targeted Drug Delivery
Bioconjugate Chem.
2018
, vol. 
29
 
2
(pg. 
420
-
430
)
16.
Pitchaimani
 
A.
Nguyen
 
T. D. T.
Maurmann
 
L.
Key
 
J.
Bossmann
 
S. H.
Aryal
 
S.
Gd3+ Tethered Gold Nanorods for Combined Magnetic Resonance Imaging and Photo-Thermal Therapy
J. Biomed. Nanotechnol.
2017
, vol. 
13
 
4
(pg. 
417
-
426
)
17.
Rahimi-Moghaddam
 
F.
Sattarahmady
 
N.
Azarpira
 
N.
Gold-Curcumin Nanostructure in Photo-thermal Therapy on Breast Cancer Cell Line: 650 and 808 nm Diode Lasers as Light Sources
J. Biomed. Phys. Eng.
2019
, vol. 
9
 
4
(pg. 
473
-
482
)
18.
Ding
 
T.
Luo
 
Z. J.
Zheng
 
Y.
Hu
 
X. Y.
Ye
 
Z. X.
Rapid repair and regeneration of damaged rabbit sciatic nerves by tissue-engineered scaffold made from nano-silver and collagen type I
Injury
2010
, vol. 
41
 
5
(pg. 
522
-
527
)
19.
Saravanan
 
S.
Nethala
 
S.
Pattnaik
 
S.
Tripathi
 
A.
Moorthi
 
A.
Selvamurugan
 
N.
Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering
Int. J. Biol. Macromol.
2011
, vol. 
49
 
2
(pg. 
188
-
193
)
20.
Mihai
 
M. M.
Dima
 
M. B.
Dima
 
B.
Holban
 
A. M.
Nanomaterials for Wound Healing and Infection Control
Materials
2019
, vol. 
12
 
13
pg. 
2176
 
21.
Colombo
 
M.
Carregal-Romero
 
S.
Casula
 
M. F.
Gutierrez
 
L.
Morales
 
M. P.
Bohm
 
I. B.
Heverhagen
 
J. T.
Prosperi
 
D.
Parak
 
W. J.
Biological applications of magnetic nanoparticles
Chem. Soc. Rev.
2012
, vol. 
41
 
11
(pg. 
4306
-
4334
)
22.
Sensenig
 
R.
Sapir
 
Y.
MacDonald
 
C.
Cohen
 
S.
Polyak
 
B.
Magnetic nanoparticle-based approaches to locally target therapy and enhance tissue regeneration in vivo
Nanomedicine
2012
, vol. 
7
 
9
(pg. 
1425
-
1442
)
23.
Meng
 
J.
Xiao
 
B.
Zhang
 
Y.
Liu
 
J.
Xue
 
H.
Lei
 
J.
Kong
 
H.
Huang
 
Y.
Jin
 
Z.
Gu
 
N.
Xu
 
H.
Super-paramagnetic responsive nanofibrous scaffolds under static magnetic field enhance osteogenesis for bone repair in vivo
Sci. Rep.
2013
, vol. 
3
 pg. 
2655
 
24.
Bilici
 
K.
Muti
 
A.
Sennaroglu
 
A.
Acar
 
H. Y.
Indocyanine green loaded APTMS coated SPIONs for dual phototherapy of cancer
J. Photochem. Photobiol., B
2019
, vol. 
201
 pg. 
111648
 
25.
Zhou
 
J.
Yang
 
Y.
Zhang
 
C. Y.
Toward Biocompatible Semiconductor Quantum Dots: From Biosynthesis and Bioconjugation to Biomedical Application
Chem. Rev.
2015
, vol. 
115
 
21
(pg. 
11669
-
11717
)
26.
Mo
 
D.
Hu
 
L.
Zeng
 
G.
Chen
 
G.
Wan
 
J.
Yu
 
Z.
Huang
 
Z.
He
 
K.
Zhang
 
C.
Cheng
 
M.
Cadmium-containing quantum dots: properties, applications, and toxicity
Appl. Microbiol. Biotechnol.
2017
, vol. 
101
 
7
(pg. 
2713
-
2733
)
27.
Mattoussi
 
H.
Mauro
 
J. M.
Goldman
 
E. R.
Anderson
 
G. P.
Sundar
 
V. C.
Mikulec
 
F. V.
Bawendi
 
M. G.
Self-Assembly of CdSe–ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein
J. Am. Chem. Soc.
2000
, vol. 
122
 
49
(pg. 
12142
-
12150
)
28.
Erogbogbo
 
F.
Yong
 
K.-T.
Roy
 
I.
Xu
 
G.
Prasad
 
P. N.
Swihart
 
M. T.
Biocompatible Luminescent Silicon Quantum Dots for Imaging of Cancer Cells
ACS Nano
2008
, vol. 
2
 
5
(pg. 
873
-
878
)
29.
Liu
 
L.
Hu
 
R.
Law
 
W.-C.
Roy
 
I.
Zhu
 
J.
Ye
 
L.
Hu
 
S.
Zhang
 
X.
Yong
 
K.-T.
Optimizing the synthesis of red- and near-infrared CuInS2 and AgInS2 semiconductor nanocrystals for bioimaging
Analyst
2013
, vol. 
138
 
20
(pg. 
6144
-
6153
)
30.
Wang
 
S.
Riedinger
 
A.
Li
 
H.
Fu
 
C.
Liu
 
H.
Li
 
L.
Liu
 
T.
Tan
 
L.
Barthel
 
M. J.
Pugliese
 
G.
De Donato
 
F.
Scotto D'Abbusco
 
M.
Meng
 
X.
Manna
 
L.
Meng
 
H.
Pellegrino
 
T.
Plasmonic Copper Sulfide Nanocrystals Exhibiting Near-Infrared Photothermal and Photodynamic Therapeutic Effects
ACS Nano
2015
, vol. 
9
 
2
(pg. 
1788
-
1800
)
31.
Simon
 
J.
Flahaut
 
E.
Golzio
 
M.
Overview of Carbon Nanotubes for Biomedical Applications
Materials
2019
, vol. 
12
 
4
pg. 
624
 
32.
Nasir
 
S.
Hussein
 
M. Z.
Zainal
 
Z.
Yusof
 
N. A.
Carbon-Based Nanomaterials/Allotropes: A Glimpse of Their Synthesis, Properties and Some Applications
Materials
2018
, vol. 
11
 
2
pg. 
295
 
33.
Geim
 
A. K.
Novoselov
 
K. S.
The rise of graphene
Nat. Mater.
2007
, vol. 
6
 
3
(pg. 
183
-
191
)
34.
Rourke
 
J. P.
Pandey
 
P. A.
Moore
 
J. J.
Bates
 
M.
Kinloch
 
I. A.
Young
 
R. J.
Wilson
 
N. R.
The real graphene oxide revealed: stripping the oxidative debris from the graphene-like sheets
Angew. Chem. Int. Ed. Engl.
2011
, vol. 
50
 
14
(pg. 
3173
-
3177
)
35.
Liu
 
Z.
Robinson
 
J. T.
Sun
 
X.
Dai
 
H.
PEGylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs
J. Am. Chem. Soc.
2008
, vol. 
130
 
33
(pg. 
10876
-
10877
)
36.
Wu
 
J.
Chen
 
A.
Qin
 
M.
Huang
 
R.
Zhang
 
G.
Xue
 
B.
Wei
 
J.
Li
 
Y.
Cao
 
Y.
Wang
 
W.
Hierarchical construction of a mechanically stable peptide-graphene oxide hybrid hydrogel for drug delivery and pulsatile triggered release in vivo
Nanoscale
2015
, vol. 
7
 
5
(pg. 
1655
-
1660
)
37.
Paul
 
A.
Hasan
 
A.
Kindi
 
H. A.
Gaharwar
 
A. K.
Rao
 
V. T. S.
Nikkhah
 
M.
Shin
 
S. R.
Krafft
 
D.
Dokmeci
 
M. R.
Shum-Tim
 
D.
Khademhosseini
 
A.
Injectable Graphene Oxide/Hydrogel-Based Angiogenic Gene Delivery System for Vasculogenesis and Cardiac Repair
ACS Nano
2014
, vol. 
8
 
8
(pg. 
8050
-
8062
)
38.
Zuchowska
 
A.
Chudy
 
M.
Dybko
 
A.
Brzozka
 
Z.
Graphene as a new material in anticancer therapy-in vitro studies
Sens. Actuators, B
2017
, vol. 
243
 (pg. 
152
-
165
)
39.
Donaldson
 
K.
Aitken
 
R.
Tran
 
L.
Stone
 
V.
Duffin
 
R.
Forrest
 
G.
Alexander
 
A.
Carbon Nanotubes: A Review of Their Properties in Relation to Pulmonary Toxicology and Workplace Safety
Toxicol. Sci
2006
, vol. 
92
 
1
(pg. 
5
-
22
)
40.
Norizan
 
M. N.
Moklis
 
M. H.
Ngah Demon
 
S. Z.
Halim
 
N. A.
Samsuri
 
A.
Mohamad
 
I. S.
Knight
 
V. F.
Abdullah
 
N.
Carbon nanotubes: functionalisation and their application in chemical sensors
RSC Adv.
2020
, vol. 
10
 
71
(pg. 
43704
-
43732
)
41.
Chen
 
J.
Chen
 
S.
Zhao
 
X.
Kuznetsova
 
L. V.
Wong
 
S. S.
Ojima
 
I.
Functionalized Single-Walled Carbon Nanotubes as Rationally Designed Vehicles for Tumor-Targeted Drug Delivery
J. Am. Chem. Soc.
2008
, vol. 
130
 
49
(pg. 
16778
-
16785
)
42.
Habibizadeh
 
M.
Rostamizadeh
 
K.
Dalali
 
N.
Ramazani
 
A.
Preparation and characterization of PEGylated multiwall carbon nanotubes as covalently conjugated and non-covalent drug carrier: A comparative study
Mater. Sci. Eng., C
2017
, vol. 
74
 (pg. 
1
-
9
)
43.
Barone
 
P. W.
Strano
 
M. S.
Single walled carbon nanotubes as reporters for the optical detection of glucose
J. Diabetes Sci. Technol.
2009
, vol. 
3
 
2
(pg. 
242
-
252
)
44.
Punbusayakul
 
N.
Talapatra
 
S.
Ajayan
 
P. M.
Surareungchai
 
W.
Label-free as-grown double wall carbon nanotubes bundles for Salmonella typhimuriumimmunoassay
Chem. Cent. J.
2013
, vol. 
7
 
1
pg. 
102
 
45.
Barrientos-Duran
 
A.
Carpenter
 
E. M.
Zur Nieden
 
N. I.
Malinin
 
T. I.
Rodriguez-Manzaneque
 
J. C.
Zanello
 
L. P.
Carboxyl-modified single-wall carbon nanotubes improve bone tissueformation in vitro and repair in an in vivo rat model
Int. J. Nanomed.
2014
, vol. 
9
 (pg. 
4277
-
4291
)
46.
Bianco
 
A.
Graphene: safe or toxic? The two faces of the medal
Angew. Chem. Int. Ed.
2013
, vol. 
52
 
19
(pg. 
4986
-
4997
)
47.
Yuan
 
X.
Zhang
 
X.
Sun
 
L.
Wei
 
Y.
Wei
 
X.
Cellular Toxicity and Immunological Effects of Carbon-based Nanomaterials
Part. Fibre Toxicol.
2019
, vol. 
16
 
1
pg. 
18
 
48.
Xu
 
Z. P.
Stevenson
 
G.
Lu
 
C.-Q.
Lu
 
G. Q.
Dispersion and Size Control of Layered Double Hydroxide Nanoparticles in Aqueous Solutions
J. Phys. Chem. B
2006
, vol. 
110
 
34
(pg. 
16923
-
16929
)
49.
Yan
 
L.
Gonca
 
S.
Zhu
 
G.
Zhang
 
W.
Chen
 
X.
Layered double hydroxide nanostructures and nanocomposites for biomedical applications
J. Mater. Chem. B
2019
, vol. 
7
 
37
(pg. 
5583
-
5601
)
50.
Wang
 
L.
Xing
 
H.
Zhang
 
S.
Ren
 
Q.
Pan
 
L.
Zhang
 
K.
Bu
 
W.
Zheng
 
X.
Zhou
 
L.
Peng
 
W.
Hua
 
Y.
Shi
 
J.
A Gd-doped Mg-Al-LDH/Au nanocomposite for CT/MR bimodal imagings and simultaneous drug delivery
Biomaterials
2013
, vol. 
34
 
13
(pg. 
3390
-
3401
)
51.
Choy
 
J. H.
Kwak
 
S. Y.
Park
 
J. S.
Jeong
 
Y. J.
Cellular uptake behavior of [γ-32P] labeled ATP-LDH nanohybrids
J. Mater. Chem.
2001
, vol. 
11
 
6
(pg. 
1671
-
1674
)
52.
Wang
 
Q. H.
Kalantar-Zadeh
 
K.
Kis
 
A.
Coleman
 
J. N.
Strano
 
M. S.
Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
Nat. Nanotechnol.
2012
, vol. 
7
 
11
(pg. 
699
-
712
)
53.
Chhowalla
 
M.
Shin
 
H. S.
Eda
 
G.
Li
 
L. J.
Loh
 
K. P.
Zhang
 
H.
The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets
Nat. Chem.
2013
, vol. 
5
 
4
(pg. 
263
-
275
)
54.
Liu
 
T.
Wang
 
C.
Gu
 
X.
Gong
 
H.
Cheng
 
L.
Shi
 
X.
Feng
 
L.
Sun
 
B.
Liu
 
Z.
Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer
Adv. Mater.
2014
, vol. 
26
 
21
(pg. 
3433
-
3440
)
55.
Chou
 
S. S.
Kaehr
 
B.
Kim
 
J.
Foley
 
B. M.
De
 
M.
Hopkins
 
P. E.
Huang
 
J.
Brinker
 
C. J.
Dravid
 
V. P.
Chemically exfoliated MoS2 as near-infrared photothermal agents
Angew. Chem. Int. Ed. Engl.
2013
, vol. 
52
 
15
(pg. 
4160
-
4164
)
56.
Qian
 
X.
Shen
 
S.
Liu
 
T.
Cheng
 
L.
Liu
 
Z.
Two-dimensional TiS(2) nanosheets for in vivo photoacoustic imaging and photothermal cancer therapy
Nanoscale
2015
, vol. 
7
 
14
(pg. 
6380
-
6387
)
57.
Cheng
 
L.
Liu
 
J.
Gu
 
X.
Gong
 
H.
Shi
 
X.
Liu
 
T.
Wang
 
C.
Wang
 
X.
Liu
 
G.
Xing
 
H.
Bu
 
W.
Sun
 
B.
Liu
 
Z.
PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy
Adv. Mater.
2014
, vol. 
26
 
12
(pg. 
1886
-
1893
)
58.
Cheng
 
L.
Yuan
 
C.
Shen
 
S.
Yi
 
X.
Gong
 
H.
Yang
 
K.
Liu
 
Z.
Bottom-Up Synthesis of Metal-Ion-Doped WS2 Nanoflakes for Cancer Theranostics
ACS Nano
2015
, vol. 
9
 
11
(pg. 
11090
-
11101
)
59.
Kou
 
Z.
Wang
 
X.
Yuan
 
R.
Chen
 
H.
Zhi
 
Q.
Gao
 
L.
Wang
 
B.
Guo
 
Z.
Xue
 
X.
Cao
 
W.
Guo
 
L.
A promisinggene delivery system developed from PEGylated MoS2 nanosheets for gene therapy
Nanoscale Res. Lett.
2014
, vol. 
9
 
1
pg. 
587
 
60.
Liu
 
T.
Chao
 
Y.
Gao
 
M.
Liang
 
C.
Chen
 
Q.
Song
 
G.
Cheng
 
L.
Liu
 
Z.
Ultra-small MoS2 nanodots with rapid body clearance for photothermal cancer therapy
Nano Res.
2016
, vol. 
9
 
10
(pg. 
3003
-
3017
)
61.
Yong
 
Y.
Cheng
 
X.
Bao
 
T.
Zu
 
M.
Yan
 
L.
Yin
 
W.
Ge
 
C.
Wang
 
D.
Gu
 
Z.
Zhao
 
Y.
Tungsten Sulfide Quantum Dots as Multifunctional Nanotheranostics for In Vivo Dual-Modal Image-Guided Photothermal/Radiotherapy Synergistic Therapy
ACS Nano
2015
, vol. 
9
 
12
(pg. 
12451
-
12463
)
62.
Teo
 
W. Z.
Chng
 
E. L.
Sofer
 
Z.
Pumera
 
M.
Cytotoxicity of exfoliated transition-metal dichalcogenides (MoS2, WS2, and WSe2) is lower than that of graphene and its analogues
Chemistry
2014
, vol. 
20
 
31
(pg. 
9627
-
9632
)
63.
Croissant
 
J. G.
Fatieiev
 
Y.
Julfakyan
 
K.
Lu
 
J.
Emwas
 
A.-H.
Anjum
 
D. H.
Omar
 
H.
Tamanoi
 
F.
Zink
 
J. I.
Khashab
 
N. M.
Biodegradable Oxamide-Phenylene-Based Mesoporous Organosilica Nanoparticles with Unprecedented Drug Payloads for Delivery in Cells
Chem. – Eur. J.
2016
, vol. 
22
 
42
(pg. 
14806
-
14811
)
64.
Corriu
 
R. J. P.
Leclercq
 
D.
Recent Developments of Molecular Chemistry for Sol–Gel Processes
Angew. Chem. Int. Ed. Engl.
1996
, vol. 
35
 
13–14
(pg. 
1420
-
1436
)
65.
Croissant
 
J. G.
Fatieiev
 
Y.
Almalik
 
A.
Khashab
 
N. M.
Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications. Advanced Healthcare
Materials
2018
, vol. 
7
 
4
pg. 
1700831
 
66.
Zhang
 
K.
Wang
 
S.
Zhou
 
C.
Cheng
 
L.
Gao
 
X.
Xie
 
X.
Sun
 
J.
Wang
 
H.
Weir
 
M. D.
Reynolds
 
M. A.
Zhang
 
N.
Bai
 
Y.
Xu
 
H. H. K.
Advanced smart biomaterials and constructs for hard tissue engineering and regeneration
Bone Res.
2018
, vol. 
6
 pg. 
31
 
67.
Tamburaci
 
S.
Tihminlioglu
 
F.
Biosilica incorporated 3D porous scaffolds for bone tissue engineering applications
Mater. Sci. Eng., C
2018
, vol. 
91
 (pg. 
274
-
291
)
68.
Huang
 
L.
Liu
 
J.
Gao
 
F.
Cheng
 
Q.
Lu
 
B.
Zheng
 
H.
Xu
 
H.
Xu
 
P.
Zhang
 
X.
Zeng
 
X.
A dual-responsive, hyaluronic acid targeted drug delivery system based on hollow mesoporous silica nanoparticles for cancer therapy
J. Mater. Chem. B
2018
, vol. 
6
 
28
(pg. 
4618
-
4629
)
69.
Zarei
 
H.
Kazemi Oskuee
 
R.
Hanafi-Bojd
 
M. Y.
Gholami
 
L.
Ansari
 
L.
Malaekeh-Nikouei
 
B.
Enhanced gene delivery by polyethyleneimine coated mesoporous silica nanoparticles
Pharm. Dev. Technol.
2019
, vol. 
24
 
1
(pg. 
127
-
132
)
70.
Mishra
 
S.
Manna
 
K.
Kayal
 
U.
Saha
 
M.
Chatterjee
 
S.
Chandra
 
D.
Hara
 
M.
Datta
 
S.
Bhaumik
 
A.
Das Saha
 
K.
Folic acid-conjugated magnetic mesoporous silica nanoparticles loaded with quercetin: a theranostic approach for cancer management
RSC Adv.
2020
, vol. 
10
 
39
(pg. 
23148
-
23164
)
71.
Yan
 
T.
He
 
J.
Liu
 
R.
Liu
 
Z.
Cheng
 
J.
Chitosan capped pH-responsive hollow mesoporous silica nanoparticles for targeted chemo-photo combination therapy
Carbohydr. Polym.
2020
, vol. 
231
 pg. 
115706
 
72.
Shi
 
Z.
Yang
 
C.
Li
 
R.
Ruan
 
L.
Microwave thermal-triggered drug delivery using thermosensitive peptide-coated core–shell mesoporous silica nanoparticles
J. Mater. Sci.
2020
, vol. 
55
 
14
(pg. 
6118
-
6129
)
73.
Du
 
M.
Chen
 
Y.
Tu
 
J.
Liufu
 
C.
Yu
 
J.
Yuan
 
Z.
Gong
 
X.
Chen
 
Z.
Ultrasound Responsive Magnetic Mesoporous Silica Nanoparticle-Loaded Microbubbles for Efficient Gene Delivery
ACS Biomater. Sci. Eng.
2020
, vol. 
6
 
5
(pg. 
2904
-
2912
)
74.
Abdo
 
G. G.
Zagho
 
M. M.
Khalil
 
A.
Recent advances in stimuli-responsive drug release and targeting concepts using mesoporous silica nanoparticles
Emergent Mater.
2020
, vol. 
3
 
3
(pg. 
407
-
425
)
75.
Horcajada
 
P.
Gref
 
R.
Baati
 
T.
Allan
 
P. K.
Maurin
 
G.
Couvreur
 
P.
Férey
 
G.
Morris
 
R. E.
Serre
 
C.
Metal–Organic Frameworks in Biomedicine
Chem. Rev.
2012
, vol. 
112
 
2
(pg. 
1232
-
1268
)
76.
Keskin
 
S.
Kızılel
 
S.
Biomedical Applications of Metal Organic Frameworks
Ind. Eng. Chem. Res.
2011
, vol. 
50
 
4
(pg. 
1799
-
1812
)
77.
Wang
 
X. G.
Dong
 
Z. Y.
Cheng
 
H.
Wan
 
S. S.
Chen
 
W. H.
Zou
 
M. Z.
Huo
 
J. W.
Deng
 
H. X.
Zhang
 
X. Z.
A multifunctional metal-organic framework based tumor targeting drug delivery system for cancer therapy
Nanoscale
2015
, vol. 
7
 
38
(pg. 
16061
-
16070
)
78.
Shang
 
W.
Zeng
 
C.
Du
 
Y.
Hui
 
H.
Liang
 
X.
Chi
 
C.
Wang
 
K.
Wang
 
Z.
Tian
 
J.
Core-Shell Gold Nanorod@Metal-Organic Framework Nanoprobes for Multimodality Diagnosis of Glioma
Adv. Mater.
2017
, vol. 
29
 
3
pg. 
1604381
 
79.
Ajnai
 
G.
Chiu
 
A.
Kan
 
T.
Cheng
 
C.-C.
Tsai
 
T.-H.
Chang
 
J.
Trends of Gold Nanoparticle-based Drug Delivery System in Cancer Therapy
J. Exp. Clin. Med.
2014
, vol. 
6
 
6
(pg. 
172
-
178
)
80.
Zhang
 
H.
Ultrathin Two-Dimensional Nanomaterials
ACS Nano
2015
, vol. 
9
 
10
(pg. 
9451
-
9469
)
81.
Zhao
 
Y.
Gao
 
W.
Li
 
S.
Williams
 
G. R.
Mahadi
 
A. H.
Ma
 
D.
Solar- versus Thermal-Driven Catalysis for Energy Conversion
Joule
2019
, vol. 
3
 
4
(pg. 
920
-
937
)
Close Modal

or Create an Account

Close Modal
Close Modal