Skip to Main Content
Skip Nav Destination

The most important sectors of the worldwide economy such as the petroleum, power generation, chemicals and food industries are mainly dependent on catalytic processes. Therefore, the development of compact, safe, energy-efficient and environmentally friendly processes is a key topic in modern chemical engineering.1 

Structured catalysts and reactors are topics of growing interest in heterogeneous catalysis, as they represent some of the most promising solutions to overcome the heat and mass transfer limitations of traditional pelletized catalysts.2,3  The well-known honeycomb substrates consist of solid matrices composed of ceramic (e.g. Al2O3, cordierite, SiC) or metallic materials (e.g. stainless steel, Al, Cu, Ni)4  that are shaped in regular forms where parallel and segregated channels allow for the flow of the gaseous stream while the catalyst is distributed on the surface of the solid phase. These systems have been introduced for automotive emission control and environmental catalysis thanks to their optimal trade-off between mass transfer and pressure drop,5  and today they are extensively employed in this field. When manufactured with a thermally conductive bulk material, these structures can be characterized by very high radial and axial effective conductivities, thanks to their continuous solid matrix. In this case, they can be exploited for the intensification of non-adiabatic heat transfer-limited processes.2,6  However, the main drawback of these structures is the manufacturing constraints associated with extrusion. Metallic monoliths can be manufactured starting from flat and corrugated metal foils that are rolled or piled up, enabling high cell densities (channels per square inch – CPSI – up to 2000) and large voidages (Open Frontal Area – OFA – up to 0.9). Several works at the laboratory micro-scale report the successful use of these materials for the intensification of strongly exo- or endo-thermic reactions.

You do not currently have access to this chapter, but see below options to check access via your institution or sign in to purchase.
Don't already have an account? Register
Close Modal

or Create an Account

Close Modal
Close Modal