Skip to Main Content
Skip Nav Destination

The demands for high-performance energy storage systems and the concept of sustainable development are compelling the pursuit of low-cost, environmental-friendly, and high-performance energy-storage devices with renewable resources. Recently, cellulose nanoparticles (CNPs) have been regarded as a sustainable and promising candidate for the development of advanced energy-storage materials owing to their unique microstructure, prospective mechanical properties, desirable thermal stability, natural abundance, and renewability. In this chapter, CNPs are typically divided into cellulose nanofibrils or nanofibres (CNFs), cellulose nanocrystalline (CNC), and bacterial cellulose (BC), and their unique structures are introduced. The recent progress of CNP-derived energy-storage materials is summarized in terms of separator, binder, and electrode material, with a focus on their applications in supercapacitors, lithium-ion batteries (LIBs), lithium–sulphur (Li–S) batteries, sodium-ion batteries (NIBs), and metal–air batteries (MABs). Undoubtedly, CNPs with unique one-dimensional (1D) nanofibre structure, superior mechanical properties, and chemical diversity have brought exception benefits for developing advanced energy-storage materials and are expected to have broad applications in flexible/wearable electric devices, lightweight electric vehicles, and sustainable grid-scale energy storage systems in the future.

You do not currently have access to this chapter, but see below options to check access via your institution or sign in to purchase.
Don't already have an account? Register
Close Modal

or Create an Account

Close Modal
Close Modal