Skip to Main Content
Skip Nav Destination

Bisphenol A (BPA) is an organic synthetic compound that widely serves as a monomer in the manufacturing of polycarbonate plastic and epoxy resins, used in the packaging of food and drinks, thermal paper, medical devices, and dental materials. BPA exposure has been associated with serious endocrine-disrupting effects in humans and wildlife. Due to its hormone-like properties, BPA can bind to estrogen receptors (ERs), thereby affecting body weight, cardiovascular functions, reproductive abnormalities, and tumorigenesis. Traditionally, BPA has been considered a weak estrogen compared to 17-β estradiol (E2) due to its low binding affinity and transcriptional activity after ER activation. However, BPA could elicit a different endocrine-disrupting capacity at very low concentrations with the same or even higher efficiency than E2. Furthermore, BPA effects rely on several non-classical ER pathways, such as interaction with a membrane ER that triggers rapid estrogenic signaling via the activation of cellular kinase systems (non-genomic) and induction of several nuclear transcription factors (genomic). Thus, considering the incidence and prevalence of health problems associated with increased endocrine disruption worldwide, the purpose of the chapter is to analyze with substantiated scientific evidence the strong estrogenic activity of BPA when it acts through classical and non-classical ER triggered pathways.

The word estrogen is commonly used to refer to 17β-estradiol (E2) due to its physiological relevance and predominance during reproductive growth. Estrogens are sex steroid hormones primarily synthesized in the ovaries and the adrenal glands, adipose tissue, brain, and testis. Estrogen displays a broad spectrum of physiological functions, including regulation of the menstrual cycle and reproduction, bone density, brain function, cholesterol mobilization, control of inflammation, and development of breast tissue and sexual organs.1  While estrogens play diverse and similar physiological roles in both sexes,2  they control primary and secondary sexual characteristics in females. In puberty, estradiol (E2) promotes epithelial cell proliferation and mammary glands, whereas estrogen helps prepare the mammary gland for milk production during pregnancy.2–5  The lower levels of estrogens produced in men are essential for sperm maturation, erectile function, and healthy libido.6  Besides this sexual and reproductive role, E2 exerts many actions in other systems such as the adipose tissue, bone, brain, cardiovascular system, endocrine system, pancreas, liver, and skeletal muscle.7,8  It is important to note that any synthetic or semi-synthetic steroid that mimics the effects of natural estrogens is considered an estrogen.

All the physiological functions of estrogen are mediated via estrogen receptors (ERs). In 1958, Elwood Jensen discovered ERs by showing that female reproductive tissues could uptake estrogen from the circulation by binding to proteins. Later, those estrogen-bound receptors migrated to the nucleus, stimulating the transcription of various genes.9,10  To date, several mechanisms for ER transcriptional regulation have been described in the literature. A classical mechanism is where E2 interacts with intracellular estrogen receptor (ERα or ERβ) resulting in receptor dimerization. This complex is then translocated to the nucleus, where it binds to estrogen response element (ERE) sequences through their DNA-binding domains.11 

Estrogens are also shown to regulate transcription of several genes that do not contain EREs in their promoter regions, the mechanisms known as “indirect genomic signaling” or “transcriptional cross-talk.” Here, estrogen indirect signaling influences activation or suppression of target gene expression by acting through protein–protein interactions with other transcription factors such as stimulating protein-1 (Sp-1), activating transcription factor (ATF)-2, Fos/c-jun, the ATF-1/cAMP (cyclic adenosine monophosphate) response element binding protein (ATF-1/CREB), and the nuclear transcription factor-Y (NF-Y).12–16 

Yet, not all estrogen effects fit under the transcriptional regulation of steroid action. The observation of extremely fast estrogen-mediated biological responses led to the hypothesis that estrogen could be acting through mechanisms not involving the direct target gene of G Protein-Coupled Estrogen Receptor 1 (GPER1).17  In addition, both ERα and ERβ have been identified outside the nucleus, i.e. in the cytoplasm, mitochondria, and associated with the plasma membrane,18  from where they can rapidly activate other signaling cascades. Both the GPER1 and some variants of ERα or ERβ are associated with non-genomic estrogen signaling.19,20  Non-genomic actions of the ERα or ERβ could be induced via a sub-population of receptors located at the cell membrane which activate intracellular signaling cascades such as the phospholipase C (PLC)/protein kinase C (PKCs) pathways,21  the Ras/Raf/MAPK (mitogen-activated protein kinase) cascade,22  the phosphatidyl inositol 3 kinase (PI3K)/Akt kinase cascade,23  and the cAMP/protein kinase A (PKA) signaling pathway.24,25 

ER can also be activated in the absence of estrogens or other receptor agonists, an interesting phenomenon observed in many cells and is known as “ligand-independent signaling”.26–28  This ligand-independent ER activation requires the action of regulatory molecules necessary for phosphorylation, such as PKA, PKC, MAPK phosphorylation cascade, inflammatory cytokines (interleukin (IL)-2), cell cycle regulators (RAS p21 protein activator cyclins A and D1), and peptide growth factors (epidermal growth factor (EGF), insulin, insulin-like growth factor-1, and transforming growth factor-β).29 

These various mechanisms of action highlight the complex multifactorial processes induced by estrogen, estrogen-like molecules, and their cellular receptors. Several studies have shown the existence of additional convergent pathways involving both genomic and non-genomic factors that result in the regulation of gene transcription.28,30 

Xenoestrogens are man-made chemicals that disrupt the endocrine system by mimicking or interfering with the actions of estrogen. These disruptions can lead to estrogen dominance as well as developmental, reproductive, neurological, and immune effects. Xenoestrogens encompass a variety of chemicals, which may be of either synthetic or natural origin. Natural xenoestrogens are represented by phytoestrogens (derived from plants) and mycoestrogens (substances produced by fungi). Synthetic xenoestrogens are molecules produced by chemical synthesis, which are widely used in agricultural chemicals (pesticides) and industrial by-products (certain plastics or detergents), along with pharmaceutical estrogens.31  Because of the ability of xenoestrogens to interfere with the endocrine system, they are also classified as endocrine-disrupting chemicals (EDCs). The estrogenic activity of some xenoestrogens such as octyl-phenol and bisphenol A (BPA) was accidentally discovered when they disrupted the experiments that studied the effects of natural estrogens.32,33  Throughout the years, the appearance of adverse developmental and reproductive effects in aquatic and wildlife species living within or near areas contaminated with xenoestrogens was reported.34–38  However, substantial evidence has pointed to the fact that these chemicals can mimic the action of the natural estrogen, although they do not exhibit a similar structure to that of estrogens. Thus, it became important to develop accurate assays that could evaluate the risk of xenoestrogens.

Commonly used in vitro screening methods are based on the classical concept of estrogenicity, such as competitive ER-binding assays and yeast-based reporter assays. However, as described earlier, E2 can mediate its estrogenic activity by many other signaling pathways, and not all of them are evaluated by these receptor-based assays. In vitro assays cannot detect pro-estrogens metabolized in vivo to estrogen, which further underestimates the potency of pro-estrogens and their metabolites.39 

Bisphenol A, also known as BPA, is a synthetic man-made chemical with a molecular weight of 228.29 g mol−1 with the chemical formula (CH3)2C(C6H4OH)2. This monomer was first synthesized by Dianin in 1891 and reported to be a synthetic estrogen in the 1930s.40  In the 1950s, BPA was rediscovered as a compound that could be used to synthesize the first epoxy resins as protective coatings and later polymerized to make hard plastic called polycarbonate, which is strong enough to replace steel and clear enough to replace glass.41  Since then, BPA has been used widely in industrial production and has become one of the highest volume chemicals produced worldwide. More than 6 billion pounds of BPA are produced each year, and >100 tons are released into the atmosphere by yearly production.42 

Like other chemicals, BPA can be released (or leached) from these materials under heat stress or through acidic and basic conditions, which accelerates the hydrolysis of the ester bond linking BPA monomers and leads to human exposure.43–45  It is estimated that BPA-contaminated food contributes to >90% of overall BPA exposure, whereas exposure through dental surgery, dermal absorption, and dust ingestion remains <5% in normal situations.46  Overall, human exposure to BPA is consistent and widespread, and biomonitoring studies have reported that >90% of individuals have detectable amounts of BPA in urine samples in the United States, Germany, and Canada.47–49  Exposure to BPA is a major health concern due to its ability to disrupt the endocrine system,50,51  and, in many ways, it has become a model EDC. BPA has deleterious effects on the cardiovascular system, alters metabolism, contributes to cancer, and changes immune and reproductive systems. Exposure to BPA is associated with several human diseases.52  In contrast with these reports, plastic manufacturers have started to release “BPA-free” plastic material, and the scientific community continues to report the risk of BPA for human beings and wildlife health, highlighting the demand for screening BPA exposures as a research priority.53–55 

The dispute over the safety of the use of BPA has resulted in a deep divide between regulatory toxicologists working for federal agencies or chemical industries and scientists trained in the principles of endocrinology. These principles include the understanding of “low-dose” effects, non-monotonic dose responses, and co-exposure effects, as well as the presence of sex-specific and tissue-specific effects of BPA.56–59  Another subject of significant debate surrounding BPA exposure is the possible mechanisms by which BPA is thought to exert endocrine-disrupting properties. BPA was initially thought to exert EDC actions primarily by disrupting the activity of the classical estrogen signaling pathways, using ERs as transcription factors binding to the ERE site in the DNA.60,61  Nowadays, increasing BPA research shows that BPA can also trigger non-classical estrogen-activated pathways via binding to membrane ERs.39,62  Moreover, many other signaling systems such as thyroid function,63  androgen signaling,64  hormone biosynthesis and/or metabolism and numerous other mechanisms that converge upon endocrine and reproductive systems have been proposed to explain BPA actions.52,65  Far from addressing concerns about the safety of BPA doses accepted by government agencies, the incidence and prevalence of health problems associated with BPA exposure have increased worldwide. Numerous reviews are available regarding sources of BPA exposure, biomonitoring studies, mechanisms of action, and exposure effects, both in vitro and in vivo.42,45  Furthermore, there are extensive reviews of BPA's low-dose effects and molecular mechanisms related to toxicity on human health.51,52,65–67  Here, we examine the estrogenic activity of BPA when acting through the classical and non-classical ER-activated pathways to examine whether these mechanisms are at the root of the effect of BPA exposure on the endocrine system.

Like estrogens, BPA regulates different physiological processes such as growth, development, and homeostasis of numerous tissues through the binding and activation of the classical estrogen receptors, ERα and ERβ51  (see Figure 1.1). These estrogen receptors are encoded by two separate genes located on human chromosomes 6 and 14, respectively.68,69  In 1993, BPA's estrogenic activity was rediscovered while looking for an estrogen-binding protein in yeast. Krishnan et al. showed that BPA leached from polycarbonate flasks during autoclaving, rather than coming from yeast, as initially thought. Leaching was confirmed by performing different competitive binding assays such as ER and reversal estrogen action by tamoxifen, with the lowest effective dose being 10–20 nM.32  The BPA molecule has structural features that confer the ability to bind to ERα and ERβ subtypes, although it displays 1000 to 10 000 times weak binding affinity to these receptors compared to the natural hormone E2.35,65,70  The weaker affinity of BPA for ERs could be accounted for at least in part by the 42 van der Waals interactions within the BPA–ERα complex, in contrast to of the 51 interactions involved in the binding of E2–ERα.71  Surprisingly, BPA could exert a stronger estrogen-like activity at nanomolar doses than at micromolar doses.67,72 

Figure 1.1

Mechanisms of bisphenol A (BPA) action via classical and non-classical estrogen receptor (ER) pathways. In the classical ER pathway, BPA binds with the ERs located in the cytoplasm (cER) or in the nucleus (nER) and regulates the transcription/translation of genes/proteins. In the non-genotropic pathway, BPA binds to membrane ER (mERs) and G-protein coupled ERs (GPER/GPR30), which triggers rapid estrogenic signaling via activation of cellular kinase systems such as mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K), protein kinase A (PKA). In the non-classical genotropic ER pathway, BPA regulates gene expression by increasing or decreasing the expression of several transcription factors (TFs). P: phosphorylation. Created with BioRender.com.

Figure 1.1

Mechanisms of bisphenol A (BPA) action via classical and non-classical estrogen receptor (ER) pathways. In the classical ER pathway, BPA binds with the ERs located in the cytoplasm (cER) or in the nucleus (nER) and regulates the transcription/translation of genes/proteins. In the non-genotropic pathway, BPA binds to membrane ER (mERs) and G-protein coupled ERs (GPER/GPR30), which triggers rapid estrogenic signaling via activation of cellular kinase systems such as mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K), protein kinase A (PKA). In the non-classical genotropic ER pathway, BPA regulates gene expression by increasing or decreasing the expression of several transcription factors (TFs). P: phosphorylation. Created with BioRender.com.

Close modal

Mechanisms for ER-mediated gene regulation are complex and depend on the recruitment of tissue-specific co-regulators that differentially affect ER interaction with EREs of different target genes.73,74  BPA selectively binds to ERα and ERβ, but has a higher binding affinity relative to E2 at ERβ than at ERα in target cells.75,76  A recent study in a rat model showed that BPA treatment decreased ERα and increased ERβ mRNA expression.77  Similar effects were observed in female mice hearts exposed to 5 μg BPA/kg body weight during myocarditis, showing significant decreased ERα and increased ERβ mRNA expression levels.78  Gould et al. previously emphasized that BPA is not merely a weak estrogen; rather, it exhibits characteristics of a distinct molecular mechanism of action via ERα.79  An extensive uterotrophic analysis of BPA confirmed that it could induce proliferative and stimulatory changes in estrogen targets in concentrations ranging from 0.1 to 100 mg kg−1.80  Another study confirmed that BPA at a dose of 750 μg per mouse stimulated uterine proliferation in an ERα-dependent manner, which was highly correlated to that of E2.81  In Ishikawa cells, BPA exposure decreased the protein expression levels of glucocorticoid-regulated kinase 1 (SGK1) and epithelial Na+ channel α-subunit (ENaCα) via an ER pathway, causing damage in embryo implantation and uterus decidualization in mice.82  During adulthood, BPA has been shown to bind with ERs located in the testis and causes harmful effects on germ cell differentiation, sperm production, and levels of male reproductive hormones.83 

BPA induced the migration of normal human colon mucosal epithelial (NCM460) cells by increasing the expressions of integrin β1 and matrix metalloproteinase (MMP) mediated by ERβ.84  In addition, BPA was shown to induce the key transcription factor of epithelial–mesenchymal transition (EMT) and alter the expression and nuclear localization of the zinc-finger transcription factor Snai1 and in hemangioma cells via an $ERα-mediated signaling pathway, resulting in the migration and invasion of hemangioma cells.85  Such BPA-exposed induction of ER-dependent EMT was also observed in human breast cancer cells (MCF-7) by increasing the expression of C-X-C chemokine receptor type 4 (CXCR4), a receptor of CXCL12, thereby enhancing migration and invasion capacity of cells.86  Up-regulation of CXCL12 by BPA exposure via ER activation was also reported in human ovarian carcinoma cells.87  More recently, HepG2 cells exposed to BPA increased the transcriptional activity of CYP2C9 by forming a BPA–ERα complex binding with ERE in the promoter region of CYP2C9 gene.88 

Beyond the classical ER-modulator effect, BPA can also act via genomic and non-genomic pathways (see Figure 1.1). In the genomic pathway, BPA binds with the ERs located in the cytoplasm. The binding modifies overall receptor signaling that affects nuclear chromatin function and regulates the transcription and translation of genes and proteins, affecting cell proliferation, differentiation, and survival.8  Studies have shown that BPA can facilitate estrogen-like activities similar to or stronger than E2.89–91  These effects observed at low BPA doses can be explained at least partially by rapid responses via non-classical estrogen-triggered pathways.39,52,65,66  BPA interacts differently within the ligand domain of ERs compared to E2.79  BPA also has different co-activator recruitment, as highlighted by the fact that the BPA–ERb complex showed 500-fold greater potency than BPA–ERα in recruiting the co-activator TIF2.76  Therefore, the adverse effects of BPA exposure on human health could be mediated by rapid activation of non-ER-dependent signaling pathways, which produce fast biological responses on specific cellular targets.

Adverse effects of BPA exposure on human health are also mediated via non-genomic-dependent signaling pathways involving membrane estrogen receptor (mER).92  Activation of mERs by BPA triggers rapid estrogenic signaling via activation of cellular kinase systems such as PKA, PKC, PI3K, MAPK, changes in levels of cAMP, and intracellular calcium as demonstrated in several human cancers.93  High-dose BPA tends to acts as an ER antagonist by directly regulating the genomic transcription. In contrast, BPA at low doses is generally thought to disrupt the biological function in a non-genomic manner mediated by mERs.94  BPA has been shown to promote cell proliferation or apoptosis by binding to mERs and rapid activation of downstream pathways.95,96 

G-protein coupled estrogen receptor (GPER/GPR30) is one of the most common mERs that plays an important role in the toxic effects of BPA.66,97  GPR30 mRNA is expressed in numerous tissues with different expression patterns.98  GPR30 is a seven-transmembrane-domain receptor that binds BPA at a half maximal inhibitory concentration of 630 nM and its relative binding affinity when compared to E2 equals 2.83 nM in stably transfected ER-negative HEK293 cells.92  Interestingly, studies have demonstrated that the binding affinity of E2 to GPR30 is 10-fold lower than ERα, whereas BPA affinity to GPR30 is about 50-fold higher than ERα.92,99  In GC-2 cells, BPA-induced GPR30-mediated activation of the epidermal growth factor receptor (EGFR)-MAPK signaling pathway, along with activating the c-Fos gene and cell-cycle gene Cyclin D1 inhibition.100  Similarly, BPA induced GPER-mediated activation of EGFR and MAPK signaling, leading to meiotic arrest in a zebrafish model.101 

MAPK, PI3K/AKT, nuclear factor (NF)κB, JNK, and Ca2+ homeostasis are the most widely studied pathways associated with BPA and cancer.93,102–104  BPA has been shown to activate the GPER1 (GPER/EGFR/extracellular signal-regulated kinase (ERK)1/2) signaling pathway in cancer cells by inducing the expression of the proto-oncogene c-fos (a significant gene in the early estrogen response) and activator protein-1 (AP1) target genes.105,106  Similar signaling cascade activation was also reported by low dose of BPA, resulting in the progression of male germ-cell cancer.107  In triple-negative breast cancer (TNBC) cells, BPA proliferative and pro-survival effects depend on ERK1/2 and AKT activation.108  Constant BPA exposure to breast cancer cells induced resistance to an EGFR-targeted anti-cancer drug via EGFR/ERK1/2 pathway activation, and increased protein levels of BCL2 (anti-apoptotic) and SOD1 (anti-oxidant).109,110  BPA-mediated resistance to anti-cancer drugs also activated pro-survival signaling pathways, such as PI3K/AKT/mTOR pathways.111,112  Wang et al.113  have demonstrated that BPA could stimulate the growth, invasion, and migration of RL95-2 cells via the MAPK pathway, which may upregulate cyclo-oxygenase-2 expression. BPA exposure was shown to induce migration and invasion of lung cancer cells and increased proliferation and migration of laryngeal squamous cell carcinoma (LSCC) cells mediated via the GPER-dependent pathway.114,115  Interestingly, the BPA–GRP30 complex also induced testicular seminoma cell proliferation in vitro, the effect of which was reverted using a GPR30 antagonist, G15.95  Castillo Sanchez et al.116  found that BPA activates the GPER-dependent pathway and the kinases (i.e. focal adhesion kinase (FAK), proto-oncogene tyrosine-protein kinase (SRC), and ERK2) required for migration by increasing the activity of AP-1 and NFκB-DNA binding. In cervical cancer, BPA activated NFκB signaling via IKKβ resulting in cell migration and upregulation of fibronectin and metalloproteinase-9.117  BPA also increased levels of leptin receptors, which induced proliferation by STAT3, ERK1/2, and AKT phosphorylation.118  Additionally, BPA-induced Ca2+ signaling initiated at the plasma membrane activated the transcription factor CREB in the nucleus within 15 minutes of exposure.119  Yaguchi120  reported that BPA activated the EGFR/ERK pathway by facilitating Ca2+ influx in Ishikawa cells and EGF secretion to the extracellular space. BPA also induced apoptosis of KGN cells (a human granulosa-like tumor cell line) through GPER-dependent activation of the ROS/Ca2+–ASK1–JNK signaling pathway.121  BPA was shown to impair glucose tolerance, increase body weight, and reduce insulin secretion in mice,122,123  effects that were protected in GPR30 knockout female mice.124  Exposure to low-dose BPA increases GPR30 and produces specific inflammatory proteins, including IL8, IL6, and monocyte chemoattractant protein-1α, both in cultured mature adipocytes and in stromal-vascular fraction cells isolated from mammary human adipose tissue biopsies.125 

Another membrane-associated ER, named ERα36, was reported to promote BPA-induced leiomyoma cell proliferation by activating SRC, EGFR, and MAPK p44/42, increase expression of growth factor receptor-bound protein 2 (Grb2), son of sevenless homolog 1 (Sos1) and Ras.126  Integrins are transmembrane receptors that can regulate cellular signals. BPA was found to increase the expressions of MMP-2, MMP-9, integrin β1, and integrin α5 in the placenta, inducing a greater proportion of the labyrinth and spongiotrophoblast layers in mice.127  Environmental doses of BPA induced cancer cell migration via a rapid direct activation of integrin β1.128 

Several nuclear transcription factors (TFs) are associated with BPA action via non-classical ER signaling (see Figure 1.1). In particular, studies have shown that induction of adipogenic TFs, such as PPARγ, C/EBPs, and Nrf2 play an important role in the “obesogenic effect” of BPA. Other evidence suggests a critical role of HAND2 protein and HOX family members in BPA-mediated detrimental effects.

Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily known to exert a wide range of biological effects on adipogenesis, cell proliferation, differentiation, immune response, and metabolism. The PPAR family comprises three different subtypes (PPARα, β/δ, γ), all of which are important regulators of glucose and lipid metabolism.52  The activity of PPARγ is governed by the binding of small lipophilic ligands, chiefly fatty acids, derived from nutrition or metabolism. Perinatal BPA exposure via milk during lactation modified early adipogenesis by modulating adipocyte hypertrophy and overexpression of pro-adipogenic transcription factors, PPARγ, increasing the body weight of female pups, but not male pups.129  Similarly, gestational BPA exposure increases PPARγ expression level in pre-adipocytes isolated from female sheep progeny, but not from male progeny.130 

It has been reported that BPA effects mediated via PPARγ are not only observed in adipose tissue, but also in the liver. Subcutaneous injection of BPA in mice increases the PPARγ gene expression levels in the liver, resulting in fasting hyperglycemia, glucose intolerance, and high levels of non-esterified fatty acids.122  Hepatic PPARγ expression, along with increased fat mass and total body weight, were also observed in male mice exposed to BPA.131  Several conflicting data on PPARγ-mediated BPA effects have been obtained in culture cells. Increased PPARγ levels were observed in murine 3T3-L1 cells exposed to both low and high doses of BPA.131,132  Conversely, no differences in PPARγ 1 and PPARγ 2 expression levels were observed in the same cells in response to BPA exposure.133 

BPA has also been shown to significantly upregulate PPARγ expression in adult human pre-adipocytes and freshly cultured omental adipose tissue from child donors.134,135  In contrast, BPA effects in human adipose-derived stem cells was not shown to be mediated by PPARγ.134 

Similar to that of PPARγ, the role of CCAAT/enhancer-binding proteins (C/EBPs) as mediators of BPA effects is presently disputed. C/EBPs encompasses a family of six transcription factors with structural and functional homologies, but with different transactivating abilities and tissue specificities.

While BPA-exposed female rats have reported an increase of C/EBP expression in adipocytes,129  no effect of BPA was observed on this transcription factor in 3T3-L1 cells.133  A recent study highlighted the involvement of other members of the C/EBP family in the metabolic damage caused by BPA, where triglyceride accumulation in human adipose-derived mesenchymal stem cells by BPA exposure is associated not only to the upregulation of PPARγ and C/EBPα, but also to the increase of C/EBPβ gene expression.136  C/EBP-mediated BPA effects have also been linked with liver dysfunction and disease. Female mice fed a diet supplemented with BPA showed a decreased level of C/EBPα in fetal livers compared to the control animals, an effect not observed in male mice. This highlights BPA-mediated disruption of fetal liver maturation in a sex-specific manner and may further alter the expression level of albumin, alpha-fetoprotein, and glycogen synthase.137 

Nuclear factor eythroid-2-related factor 2 (Nrf2) is a basic leucine zipper transcription factor regulating the expression of antioxidant proteins and protects against oxidative damage.138  BPA administered orally to lupus-prone MRL/lpr mice has been shown to decrease Nrf2 expression in renal tissue exacerbating lupus nephritis, highlighting a protective role of Nrf2 in BPA-induced renal damage.139  Unlike the kidneys, Nrf2 impairs liver function in leptin-deficient mice by decreasing Kelch-like ECH-associated protein 1 (Keap1) and increasing lipid accumulation associated with constitutive activation of Nrf2.140  Such BPA-induced Nrf2 upregulation via Keap1 inactivation has been reported in a human hepatoma cell line.141  Furthermore, 25 µg kg−1 per day of BPA administration to pregnant CD-1 mice increased Nrf2 expression and its recruitment to the Srebp-1c promoter, causing hepatic lipid deposition.142 

Heart- and neural crest derivatives-expressed protein 2 (HAND2) is a basic helix-loop-helix transcription factor, which plays an important role in establishing proper implantation for pregnancy. Chronic BPA exposure to female mice decreases HAND2 expression in the uterine stroma, affecting embryo implantation and formation of the decidua during the early phases of pregnancy.143  HAND2 overexpression is also associated with increased proliferation of cardiac progenitor cells,144  and emerging evidence indicates an association between cardiovascular diseases and BPA.145  Interestingly, BPA significantly upregulates ERβ expression and H3K9 and H4K12 histone acetylation, which could be responsible for HAND2 upregulation and the increased percentage of heart malformations.146  Thus, HAND2 represents a key regulator of several organs such as the uterus and heart, and impairment of its expression following BPA exposure may lead to reproductive and cardiac disorders via genetic and epigenetic mechanisms.

The term “HOX” was originally termed as a group of related HOX genes that encode for transcription factors characterized by a well-conserved DNA sequence known as the homeobox. HOX genes are found in humans and rodents and are expressed during embryogenesis and early development, where they act as master transcriptional regulators.147,148  Among the HOX genes, HOXA10 is expressed in the female reproductive system and is important for normal decidualization and pregnancy, while HOXB9 and HOXC6 are involved in the development of the mammary gland.149–151  Female pups exposed in utero to 0.5–1.0 mg kg−1 BPA showed an elevated level of HOXA10 in uterine stromal cells, which may mediate the decidualization defects.151  HOXB9 is also known to activate in response to BPA exposure in breast cancer cells.102  Studies have also shown that BPA increases HOXB9 and HOXC6 expression in the mammary glands of ovariectomized rats and culture human breast cancer cells (MCF7), highlighting that BPA harmful effects in breast tumors are mediated via these transcription factors.152,153 

Most of the world's population is widely exposed to BPA, as it is largely used to manufacture polycarbonate plastic and is released into foods and beverages. A growing body of evidence indicates that BPA exposure has been linked to numerous adverse perinatal, childhood, and adult health outcomes in both animals and humans, such as reproductive effects, developmental effects, metabolic disease, and cancer.93,154,155  However, several contrasting results about the adverse effects of BPA have been described, which may be due to the use of different doses, experimental models or conditions.42  In parallel, increasing efforts have been taken to elucidate the molecular mechanisms through which BPA acts. The integration of the knowledge about the molecular pathways of BPA with epidemiology could certainly improve the understanding of the toxic effects of BPA on human health.

As summarized in this chapter, there is no doubt that BPA is an estrogenic compound that can initiate the classical ER pathway through binding to relatively specific ERs and regulating gene expression. Additionally, BPA-estrogenic action also acts through non-classical estrogen-activated pathways. Rapid non-genomic and genomic actions may be mediated by BPA's interactions with the membrane-associated ERs and/or GPERs and a suite of important transcription factors. BPA exposure significantly impacts growth, survival, proliferation, invasion, migration, and apoptosis in cell- and tissue-specific manners through these mechanisms. In addition, exposure to BPA may facilitate chemotherapy resistance to anti-cancer drugs and also interacts with several receptors and causes aberrant changes in numerous pathways such as GPER/EGFR/ERK1/2, JAK/STAT, PI3K/AKT/mTOR, SRC1-3, phosphorylation of cyclin D1, AKT, PPARγ, and Ca2+ homeostasis. BPA probably exerts these adverse effects with rapid signaling, showing the presence of extracellularly accessible binding sites that act to regulate intracellular signaling. This rapid signaling may elicit signal transduction pathways responsible for growth and differentiation and in energy and nutrient metabolism. It has become evident that BPA can activate transduction signaling pathways that vary across cell types, and the total disruption effect arises from the combination of rapid mechanisms and longer signaling effects, as highlighted in this chapter. The mechanisms at the root of these multiple effects are numerous and are activated at BPA concentrations below the concentration range in which “pharmaceutical” effects are detected by classical toxicology and create non-monotonic dose–response curves.156  It is also interesting to note that all the upstream pathways may contribute to stable and inheritable modifications by regulating epigenetic enzymes, which may also sustain initial exposure to BPA.157  Nevertheless, these mechanisms are only applicable and reported in some cell types and animal models. More mechanistic and comprehensive insights into other biological systems are needed to unravel the classical and non-classical ER effects of BPA. Identifying BPA effects in different model systems may help raise awareness within the scientific community and the manufacturing industry of the need to seek alternatives to BPA to reduce its harmful effects. Therefore, to date, the best practice is still the precaution of limiting the use of plastic materials and promoting BPA-free products.

I thank Dr Natalie R. Gassman (University of South Alabama, Mobile, AL, USA) for critically reading the chapter and suggesting substantial improvements.

1.
Liang
 
J.
Shang
 
Y.
Estrogen and cancer
Annu. Rev. Physiol.
2013
, vol. 
75
 (pg. 
225
-
240
)
2.
Simpson
 
E. R.
Misso
 
M.
Hewitt
 
K. N.
Hill
 
R. A.
Boon
 
W. C.
Jones
 
M. E.
Kovacic
 
A.
Zhou
 
J.
Clyne
 
C. D.
Estrogen–the good, the bad, and the unexpected
Endocr. Rev.
2005
, vol. 
26
 (pg. 
322
-
330
)
3.
Gruber
 
C. J.
Tschugguel
 
W.
Schneeberger
 
C.
Huber
 
J. C.
Production and actions of estrogens
N. Engl. J. Med.
2002
, vol. 
346
 (pg. 
340
-
352
)
4.
Koos
 
R. D.
Minireview: Putting physiology back into estrogens’ mechanism of action
Endocrinology
2011
, vol. 
152
 (pg. 
4481
-
4488
)
5.
Voogt
 
J. L.
Control of hormone release during lactation
Clin. Obstet. Gynecol.
1978
, vol. 
5
 (pg. 
435
-
455
)
6.
Schulster
 
M.
Bernie
 
A. M.
Ramasamy
 
R.
The role of estradiol in male reproductive function
Asian J. Androl.
2016
, vol. 
18
 (pg. 
435
-
440
)
7.
Gustafsson
 
J.-Å.
What pharmacologists can learn from recent advances in estrogen signalling
Trends Pharmacol. Sci.
2003
, vol. 
24
 (pg. 
479
-
485
)
8.
Heldring
 
N.
Pike
 
A.
Andersson
 
S.
Matthews
 
J.
Cheng
 
G.
Hartman
 
J.
Tujague
 
M.
Ström
 
A.
Treuter
 
E.
Warner
 
M.
Gustafsson
 
J.-Å.
Estrogen Receptors: How Do They Signal and What Are Their Targets
Physiol. Rev.
2007
, vol. 
87
 (pg. 
905
-
931
)
9.
Jensen
 
E. V.
Desombre
 
E. R.
Kawashima
 
T.
Suzuki
 
T.
Kyser
 
K.
Jungblut
 
P. W.
Estrogen-binding substances of target tissues
Science
1967
, vol. 
158
 (pg. 
529
-
530
)
10.
Jensen
 
E. V.
Suzuki
 
T.
Kawashima
 
T.
Stumpf
 
W. E.
Jungblut
 
P. W.
DeSombre
 
E. R.
A two-step mechanism for the interaction of estradiol with rat uterus
Proc. Natl. Acad. Sci. U. S. A.
1968
, vol. 
59
 (pg. 
632
-
638
)
11.
Fuentes
 
N.
Silveyra
 
P.
Estrogen receptor signaling mechanisms
Adv. Protein Chem. Struct. Biol.
2019
, vol. 
116
 (pg. 
135
-
170
)
12.
Aranda
 
A.
Pascual
 
A.
Nuclear hormone receptors and gene expression
Physiol. Rev.
2001
, vol. 
81
 (pg. 
1269
-
1304
)
13.
Göttlicher
 
M.
Heck
 
S.
Herrlich
 
P.
Transcriptional cross-talk, the second mode of steroid hormone receptor action
J. Mol. Med.
1998
, vol. 
76
 (pg. 
480
-
489
)
14.
O'Lone
 
R.
Frith
 
M. C.
Karlsson
 
E. K.
Hansen
 
U.
Genomic targets of nuclear estrogen receptors
Mol. Endocrinol.
2004
, vol. 
18
 (pg. 
1859
-
1875
)
15.
Safe
 
S.
Kim
 
K.
Nuclear receptor-mediated transactivation through interaction with Sp proteins
Prog. Nucleic Acid Res. Mol. Biol.
2004
, vol. 
77
 (pg. 
1
-
36
)
16.
Saville
 
B.
Wormke
 
M.
Wang
 
F.
Nguyen
 
T.
Enmark
 
E.
Kuiper
 
G.
Gustafsson
 
J. A.
Safe
 
S.
Ligand-, cell-, and estrogen receptor subtype (alpha/beta)-dependent activation at GC-rich (Sp1) promoter elements
J. Biol. Chem.
2000
, vol. 
275
 (pg. 
5379
-
5387
)
17.
Prossnitz
 
E. R.
Barton
 
M.
The G-protein-coupled estrogen receptor GPER in health and disease
Nat. Rev. Endocrinol.
2011
, vol. 
7
 (pg. 
715
-
726
)
18.
Hammes
 
S. R.
Levin
 
E. R.
Extranuclear steroid receptors: nature and actions
Endocr. Rev.
2007
, vol. 
28
 (pg. 
726
-
741
)
19.
Barton
 
M.
Filardo
 
E. J.
Lolait
 
S. J.
Thomas
 
P.
Maggiolini
 
M.
Prossnitz
 
E. R.
Twenty years of the G protein-coupled estrogen receptor GPER: Historical and personal perspectives
J. Steroid Biochem. Mol. Biol.
2018
, vol. 
176
 (pg. 
4
-
15
)
20.
Filardo
 
E. J.
Thomas
 
P.
Minireview: G protein-coupled estrogen receptor-1, GPER-1: its mechanism of action and role in femalereproductive cancer, renal and vascular physiology
Endocrinology
2012
, vol. 
153
 (pg. 
2953
-
2962
)
21.
Marino
 
M. J.
Rouse
 
S. T.
Levey
 
A. I.
Potter
 
L. T.
Conn
 
P. J.
Activation of the genetically defined m1 muscarinic receptor potentiates N-methyl-D-aspartate (NMDA) receptor currents in hippocampal pyramidal cells
Proc. Natl. Acad. Sci. U. S. A.
1998
, vol. 
95
 (pg. 
11465
-
11470
)
22.
Dos Santos
 
E. G.
Dieudonne
 
M. N.
Pecquery
 
R.
Le Moal
 
V.
Giudicelli
 
Y.
Lacasa
 
D.
Rapid nongenomic E2 effects on p42/p44 MAPK, activator protein-1, and cAMP response element binding protein in rat white adipocytes
Endocrinology
2002
, vol. 
143
 (pg. 
930
-
940
)
23.
Marino
 
M.
Acconcia
 
F.
Trentalance
 
A.
Biphasic estradiol-induced AKT phosphorylation is modulated by PTEN via MAP kinase in HepG2 cells
Mol. Biol. Cell
2003
, vol. 
14
 (pg. 
2583
-
2591
)
24.
Gu
 
Q.
Moss
 
R. L.
17 beta-Estradiol potentiates kainate-induced currents via activation of the cAMP cascade
J. Neurosci.
1996
, vol. 
16
 (pg. 
3620
-
3629
)
25.
Picotto
 
G.
Massheimer
 
V.
Boland
 
R.
Acute stimulation of intestinal cell calcium influx induced by 17β-estradiol via the cAMP messenger system
Mol. Cell. Endocrinol.
1996
, vol. 
119
 (pg. 
129
-
134
)
26.
Bennesch
 
M. A.
Picard
 
D.
Minireview: Tipping the balance: ligand-independent activation of steroid receptors
Mol. Endocrinol.
2015
, vol. 
29
 (pg. 
349
-
363
)
27.
Maggi
 
A.
Liganded and unliganded activation of estrogen receptor and hormone replacement therapies
Biochim Biophys Acta
2011
, vol. 
1812
 (pg. 
1054
-
1060
)
28.
Vrtačnik
 
P.
Ostanek
 
B.
Mencej-Bedrač
 
S.
Marc
 
J.
The many faces of estrogen signaling
Biochem. Med.
2014
, vol. 
24
 (pg. 
329
-
342
)
29.
Nilsson
 
S.
Mäkelä
 
S.
Treuter
 
E.
Tujague
 
M.
Thomsen
 
J.
Andersson
 
G.
Enmark
 
E.
Pettersson
 
K.
Warner
 
M.
Gustafsson
 
J. A.
Mechanisms of estrogen action
Physiol. Rev.
2001
, vol. 
81
 (pg. 
1535
-
1565
)
30.
Björnström
 
L.
Sjöberg
 
M.
Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes
Mol. Endocrinol.
2005
, vol. 
19
 (pg. 
833
-
842
)
31.
Paterni
 
I.
Granchi
 
C.
Minutolo
 
F.
Risks and benefits related to alimentary exposure to xenoestrogens
Crit. Rev. Food Sci. Nutr.
2017
, vol. 
57
 (pg. 
3384
-
3404
)
32.
Krishnan
 
A. V.
Stathis
 
P.
Permuth
 
S. F.
Tokes
 
L.
Feldman
 
D.
Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving
Endocrinology
1993
, vol. 
132
 (pg. 
2279
-
2286
)
33.
Soto
 
A. M.
Justicia
 
H.
Wray
 
J. W.
Sonnenschein
 
C.
p-Nonyl-phenol: an estrogenic xenobiotic released from “modified” polystyrene
Environ. Health Perspect.
1991
, vol. 
92
 (pg. 
167
-
173
)
34.
Guillette, Jr.
 
L. J.
Gross
 
T. S.
Masson
 
G. R.
Matter
 
J. M.
Percival
 
H. F.
Woodward
 
A. R.
Developmental abnormalities of the gonad and abnormal sex hormone concentrations in juvenile alligators from contaminated and control lakes in Florida
Environ. Health Perspect.
1994
, vol. 
102
 (pg. 
680
-
688
)
35.
Sonavane
 
M.
Creusot
 
N.
Maillot-Maréchal
 
E.
Péry
 
A.
Brion
 
F.
Aït-Aïssa
 
S.
Zebrafish-based reporter gene assays reveal different estrogenic activities in river waters compared to a conventional human-derived assay
Sci. Total Environ.
2016
, vol. 
550
 (pg. 
934
-
939
)
36.
Sonavane
 
M.
Schollée
 
J. E.
Hidasi
 
A. O.
Creusot
 
N.
Brion
 
F.
Suter
 
M. J.
Hollender
 
J.
Aït-Aïssa
 
S.
An integrative approach combining passive sampling, bioassays, and effect-directed analysis to assess the impact of wastewater effluent
Environ. Toxicol. Chem.
2018
, vol. 
37
 (pg. 
2079
-
2088
)
37.
C.
Sonnenschein
and
A. M.
Soto
,
The Society of Cells – Cancer and Control of Cell Proliferation
,
Bios Scientific
,
Oxford
,
1999
, 154
38.
Sumpter
 
J. P.
Jobling
 
S.
Male sexual development in “a sea of oestrogen”
Lancet
1993
, vol. 
342
 (pg. 
124
-
125
)
39.
Alonso-Magdalena
 
P.
Ropero
 
A. B.
Soriano
 
S.
García-Arévalo
 
M.
Ripoll
 
C.
Fuentes
 
E.
Quesada
 
I.
Nadal
 
Á.
Bisphenol-A acts as a potent estrogen via non-classical estrogen triggered pathways
Mol. Cell. Endocrinol.
2012
, vol. 
355
 (pg. 
201
-
207
)
40.
Dodds
 
E. C.
Lawson
 
W.
Synthetic strogenic Agents without the Phenanthrene Nucleus
Nature
1936
, vol. 
137
 pg. 
996
 
41.
Vogel
 
S. A.
The politics of plastics: the making and unmaking of bisphenol a “safety”
Am. J. Public Health
2009
, vol. 
99
 
Suppl 3
(pg. 
S559
-
S566
)
42.
Vandenberg
 
L. N.
Maffini
 
M. V.
Sonnenschein
 
C.
Rubin
 
B. S.
Soto
 
A. M.
Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption
Endocr. Rev.
2009
, vol. 
30
 (pg. 
75
-
95
)
43.
Calafat
 
A. M.
Kuklenyik
 
Z.
Reidy
 
J. A.
Caudill
 
S. P.
Ekong
 
J.
Needham
 
L. L.
Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population
Environ. Health Perspect.
2005
, vol. 
113
 (pg. 
391
-
395
)
44.
Kang
 
J. H.
Kondo
 
F.
Katayama
 
Y.
Human exposure to bisphenol A
Toxicology
2006
, vol. 
226
 (pg. 
79
-
89
)
45.
Richter
 
C. A.
Birnbaum
 
L. S.
Farabollini
 
F.
Newbold
 
R. R.
Rubin
 
B. S.
Talsness
 
C. E.
Vandenbergh
 
J. G.
Walser-Kuntz
 
D. R.
vom Saal
 
F. S.
In vivo effects of bisphenol A in laboratory rodent studies
Reprod. Toxicol.
2007
, vol. 
24
 (pg. 
199
-
224
)
46.
Geens
 
T.
Aerts
 
D.
Berthot
 
C.
Bourguignon
 
J. P.
Goeyens
 
L.
Lecomte
 
P.
Maghuin-Rogister
 
G.
Pironnet
 
A. M.
Pussemier
 
L.
Scippo
 
M. L.
Van Loco
 
J.
Covaci
 
A.
A review of dietary and non-dietary exposure to bisphenol-A
Food Chem. Toxicol.
2012
, vol. 
50
 (pg. 
3725
-
3740
)
47.
Bushnik
 
T.
Haines
 
D.
Levallois
 
P.
Levesque
 
J.
Van Oostdam
 
J.
Viau
 
C.
Lead and bisphenol A concentrations in the Canadian population
Health Rep.
2010
, vol. 
21
 (pg. 
7
-
18
)
48.
Koch
 
H. M.
Kolossa-Gehring
 
M.
Schröter-Kermani
 
C.
Angerer
 
J.
Brüning
 
T.
Bisphenol A in 24 h urine and plasma samples of the German Environmental Specimen Bank from 1995 to 2009: a retrospective exposure evaluation
J. Exposure Sci. Environ. Epidemiol.
2012
, vol. 
22
 (pg. 
610
-
616
)
49.
LaKind
 
J. S.
Levesque
 
J.
Dumas
 
P.
Bryan
 
S.
Clarke
 
J.
Naiman
 
D. Q.
Comparing United States and Canadian population exposures from National Biomonitoring Surveys: Bisphenol A intake as a case study
J. Exposure Sci. Environ. Epidemiol.
2012
, vol. 
22
 (pg. 
219
-
226
)
50.
Rubin
 
B. S.
Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects
J. Steroid Biochem. Mol. Biol.
2011
, vol. 
127
 (pg. 
27
-
34
)
51.
Wetherill
 
Y. B.
Akingbemi
 
B. T.
Kanno
 
J.
McLachlan
 
J. A.
Nadal
 
A.
Sonnenschein
 
C.
Watson
 
C. S.
Zoeller
 
R. T.
Belcher
 
S. M.
In vitro molecular mechanisms of bisphenol A action
Reprod. Toxicol.
2007
, vol. 
24
 (pg. 
178
-
198
)
52.
Cimmino
 
I.
Fiory
 
F.
Perruolo
 
G.
Miele
 
C.
Beguinot
 
F.
Formisano
 
P.
Oriente
 
F.
Potential Mechanisms of Bisphenol A (BPA) Contributing to Human Disease
Int. J. Mol. Sci.
2020
, vol. 
21
 pg. 
5761
 
53.
Bergman
 
A.
Heindel
 
J. J.
Kasten
 
T.
Kidd
 
K. A.
Jobling
 
S.
Neira
 
M.
Zoeller
 
R. T.
Becher
 
G.
Bjerregaard
 
P.
Bornman
 
R.
Brandt
 
I.
Kortenkamp
 
A.
Muir
 
D.
Drisse
 
M.-N. B.
Ochieng
 
R.
Skakkebaek
 
N. E.
Byléhn
 
A. S.
Iguchi
 
T.
Toppari
 
J.
Woodruff
 
T. J.
The impact of endocrine disruption: a consensus statement on the state of the science
Environ. Health Perspect.
2013
, vol. 
121
 (pg. 
A104
-
A106
)
54.
Le Fol
 
V.
Aït-Aïssa
 
S.
Sonavane
 
M.
Porcher
 
J. M.
Balaguer
 
P.
Cravedi
 
J. P.
Zalko
 
D.
Brion
 
F.
In vitro and in vivo estrogenic activity of BPA, BPF and BPS in zebrafish-specific assays
Ecotoxicol. Environ. Saf.
2017
, vol. 
142
 (pg. 
150
-
156
)
55.
Zoeller
 
R. T.
Brown
 
T. R.
Doan
 
L. L.
Gore
 
A. C.
Skakkebaek
 
N. E.
Soto
 
A. M.
Woodruff
 
T. J.
Vom Saal
 
F. S.
Endocrine-disrupting chemicals and public health protection: a statement of principles from The Endocrine Society
Endocrinology
2012
, vol. 
153
 (pg. 
4097
-
4110
)
56.
Healy
 
B. F.
English
 
K. R.
Jagals
 
P.
Sly
 
P. D.
Bisphenol A exposure pathways in early childhood: Reviewing the need for improved risk assessment models
J. Exposure Sci. Environ. Epidemiol.
2015
, vol. 
25
 (pg. 
544
-
556
)
57.
Sonavane
 
M.
Gassman
 
N. R.
Bisphenol A co-exposure effects: a key factor in understanding BPA's complex mechanism and health outcomes
Crit. Rev. Toxicol.
2019
, vol. 
49
 (pg. 
371
-
386
)
58.
Valentino
 
R.
D'Esposito
 
V.
Ariemma
 
F.
Cimmino
 
I.
Beguinot
 
F.
Formisano
 
P.
Bisphenol A environmental exposure and the detrimental effects on human metabolic health: is it necessary to revise the risk assessment in vulnerable population?
J. Endocrinol. Invest.
2016
, vol. 
39
 (pg. 
259
-
263
)
59.
vom Saal
 
F. S.
Hughes
 
C.
An extensive new literature concerning low-dose effects of bisphenol A shows the need for a new risk assessment
Environ. Health Perspect.
2005
, vol. 
113
 (pg. 
926
-
933
)
60.
Kuiper
 
G. G.
Lemmen
 
J. G.
Carlsson
 
B.
Corton
 
J. C.
Safe
 
S. H.
van der Saag
 
P. T.
van der Burg
 
B.
Gustafsson
 
J. A.
Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta
Endocrinology
1998
, vol. 
139
 (pg. 
4252
-
4263
)
61.
Sheeler
 
C. Q.
Dudley
 
M. W.
Khan
 
S. A.
Environmental estrogens induce transcriptionally active estrogen receptor dimers in yeast: activity potentiated by the coactivator RIP140
Environ. Health Perspect.
2000
, vol. 
108
 (pg. 
97
-
103
)
62.
Wozniak
 
A. L.
Bulayeva
 
N. N.
Watson
 
C. S.
Xenoestrogens at picomolar to nanomolar concentrations trigger membrane estrogen receptor-alpha-mediated Ca2+ fluxes and prolactin release in GH3/B6 pituitary tumor cells
Environ. Health Perspect.
2005
, vol. 
113
 (pg. 
431
-
439
)
63.
Zoeller
 
R. T.
Environmental chemicals as thyroid hormone analogues: new studies indicate that thyroid hormone receptors are targets of industrial chemicals?
Mol. Cell. Endocrinol.
2005
, vol. 
242
 (pg. 
10
-
15
)
64.
Lee
 
H. J.
Chattopadhyay
 
S.
Gong
 
E.-Y.
Ahn
 
R. S.
Lee
 
K.
Antiandrogenic Effects of Bisphenol A and Nonylphenol on the Function of Androgen Receptor
Toxicol. Sci.
2003
, vol. 
75
 (pg. 
40
-
46
)
65.
Acconcia
 
F.
Pallottini
 
V.
Marino
 
M.
Molecular Mechanisms of Action of BPA
Dose-Response
2015
, vol. 
13
 pg. 
1559325815610582
 
66.
Ma
 
Y.
Liu
 
H.
Wu
 
J.
Yuan
 
L.
Wang
 
Y.
Du
 
X.
Wang
 
R.
Marwa
 
P. W.
Petlulu
 
P.
Chen
 
X.
Zhang
 
H.
The adverse health effects of bisphenol A and related toxicity mechanisms
Environ. Res.
2019
, vol. 
176
 pg. 
108575
 
67.
Vom Saal
 
F. S.
Vandenberg
 
L. N.
Update on the Health Effects of Bisphenol A: Overwhelming Evidence of Harm
Endocrinology
2021
, vol. 
162
 pg. 
bqaa171
 
68.
Enmark
 
E.
Pelto-Huikko
 
M.
Grandien
 
K.
Lagercrantz
 
S.
Lagercrantz
 
J.
Fried
 
G.
Nordenskjöld
 
M.
Gustafsson
 
J. A.
Human estrogen receptor beta-gene structure, chromosomal localization, and expression pattern
J. Clin. Endocrinol. Metab.
1997
, vol. 
82
 (pg. 
4258
-
4265
)
69.
Menasce
 
L. P.
White
 
G. R.
Harrison
 
C. J.
Boyle
 
J. M.
Localization of the estrogen receptor locus (ESR) to chromosome 6q25.1 by FISH and a simple post-FISH banding technique
Genomics
1993
, vol. 
17
 (pg. 
263
-
265
)
70.
Fang
 
H.
Tong
 
W.
Perkins
 
R.
Soto
 
A. M.
Prechtl
 
N. V.
Sheehan
 
D. M.
Quantitative comparisons of in vitro assays for estrogenic activities
Environ. Health Perspect.
2000
, vol. 
108
 (pg. 
723
-
729
)
71.
Delfosse
 
V.
Grimaldi
 
M.
Pons
 
J. L.
Boulahtouf
 
A.
le Maire
 
A.
Cavailles
 
V.
Labesse
 
G.
Bourguet
 
W.
Balaguer
 
P.
Structural and mechanistic insights into bisphenols action provide guidelines for risk assessment and discovery of bisphenol A substitutes
Proc. Natl. Acad. Sci. U. S. A.
2012
, vol. 
109
 (pg. 
14930
-
14935
)
72.
Welshons
 
W. V.
Thayer
 
K. A.
Judy
 
B. M.
Taylor
 
J. A.
Curran
 
E. M.
Vom Saal
 
F. S.
Large effects from small exposures. I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity
Environ. Health Perspect.
2003
, vol. 
111
 (pg. 
994
-
1006
)
73.
Klinge
 
C. M.
Estrogen receptor interaction with co-activators and co-repressors
Steroids
2000
, vol. 
65
 (pg. 
227
-
251
)
74.
Klinge
 
C. M.
Estrogen receptor interaction with estrogen response elements
Nucleic Acids Res.
2001
, vol. 
29
 (pg. 
2905
-
2919
)
75.
Kuiper
 
G. G.
Carlsson
 
B.
Grandien
 
K.
Enmark
 
E.
Häggblad
 
J.
Nilsson
 
S.
Gustafsson
 
J. A.
Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta
Endocrinology
1997
, vol. 
138
 (pg. 
863
-
870
)
76.
Routledge
 
E. J.
White
 
R.
Parker
 
M. G.
Sumpter
 
J. P.
Differential effects of xenoestrogens on coactivator recruitment by estrogen receptor (ER) alpha and ERbeta
J. Biol. Chem.
2000
, vol. 
275
 (pg. 
35986
-
35993
)
77.
Mohamad Zaid
 
S. S.
Kassim
 
N. M.
Othman
 
S.
Tualang Honey Protects against BPA-Induced Morphological Abnormalities and Disruption of ERα, ERβ, and C3 mRNA and Protein Expressions in the Uterus of Rats
Evidence-Based Complementary Altern. Med.
2015
, vol. 
2015
 pg. 
202874
 
78.
Bruno
 
K. A.
Mathews
 
J. E.
Yang
 
A. L.
Frisancho
 
J. A.
Scott
 
A. J.
Greyner
 
H. D.
Molina
 
F. A.
Greenaway
 
M. S.
Cooper
 
G. M.
Bucek
 
A.
Morales-Lara
 
A. C.
Hill
 
A. R.
Mease
 
A. A.
Di Florio
 
D. N.
Sousou
 
J. M.
Coronado
 
A. C.
Stafford
 
A. R.
Fairweather
 
D.
BPA Alters Estrogen Receptor Expression in the Heart After Viral Infection Activating Cardiac Mast Cells and T Cells Leading to Perimyocarditis and Fibrosis
Front. Endocrinol.
2019
, vol. 
10
 pg. 
598
 
79.
Gould
 
J. C.
Leonard
 
L. S.
Maness
 
S. C.
Wagner
 
B. L.
Conner
 
K.
Zacharewski
 
T.
Safe
 
S.
McDonnell
 
D. P.
Gaido
 
K. W.
Bisphenol A interacts with the estrogen receptor alpha in a distinct manner from estradiol
Mol. Cell. Endocrinol.
1998
, vol. 
142
 (pg. 
203
-
214
)
80.
Markey
 
C. M.
Luque
 
E. H.
Munoz De Toro
 
M.
Sonnenschein
 
C.
Soto
 
A. M.
In utero exposure to bisphenol A alters the development and tissue organization of the mouse mammary gland
Biol. Reprod.
2001
, vol. 
65
 (pg. 
1215
-
1223
)
81.
Hewitt
 
S. C.
Korach
 
K. S.
Estrogenic activity of bisphenol A and 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE) demonstrated in mouse uterine gene profiles
Environ. Health Perspect.
2011
, vol. 
119
 (pg. 
63
-
70
)
82.
Yuan
 
M.
Hu
 
M.
Lou
 
Y.
Wang
 
Q.
Mao
 
L.
Zhan
 
Q.
Jin
 
F.
Environmentally relevant levels of bisphenol A affect uterine decidualization and embryo implantation through the estrogen receptor/serum and glucocorticoid-regulated kinase 1/epithelial sodium ion channel α-subunit pathway in a mouse model
Fertil. Steril.
2018
, vol. 
109
 (pg. 
735
-
744
.e731
83.
Williams
 
C.
Bondesson
 
M.
Krementsov
 
D. N.
Teuscher
 
C.
Gestational bisphenol A exposure and testis development
Endocr. Disruptors
2014
, vol. 
2
 pg. 
e29088
 
84.
Shi
 
T.
Zhao
 
C.
Li
 
Z.
Zhang
 
Q.
Jin
 
X.
Bisphenol a exposure promotes the migration of NCM460 cells via estrogen receptor-mediated integrin β1/MMP-9 pathway
Environ. Toxicol.
2016
, vol. 
31
 (pg. 
799
-
807
)
85.
Zhai
 
D.
He
 
J.
Li
 
X.
Gong
 
L.
Ouyang
 
Y.
Bisphenol A regulates Snail-mediated epithelial-mesenchymal transition in hemangioma cells
Cell Biochem. Funct.
2016
, vol. 
34
 (pg. 
441
-
448
)
86.
Lee
 
G. A.
Hwang
 
K. A.
Choi
 
K. C.
Inhibitory effects of 3,3′-diindolylmethane on epithelial-mesenchymal transition induced by endocrine disrupting chemicals in cellular and xenograft mouse models of breast cancer
Food Chem. Toxicol.
2017
, vol. 
109
 (pg. 
284
-
295
)
87.
Hall
 
J. M.
Korach
 
K. S.
Endocrine disrupting chemicals promote the growth of ovarian cancer cells via the ER-CXCL12-CXCR4 signaling axis
Mol. Carcinog.
2013
, vol. 
52
 (pg. 
715
-
725
)
88.
Xu
 
J.-Y.
Wu
 
L.
Shi
 
Z.
Zhang
 
X.-J.
Englert
 
N. A.
Zhang
 
S.-Y.
Upregulation of human CYP2C9 expression by Bisphenol A via estrogen receptor alpha (ERα) and Med25
Environ. Toxicol.
2017
, vol. 
32
 (pg. 
970
-
978
)
89.
Alonso-Magdalena
 
P.
Morimoto
 
S.
Ripoll
 
C.
Fuentes
 
E.
Nadal
 
A.
The estrogenic effect of bisphenol A disrupts pancreatic beta-cell function in vivo and induces insulin resistance
Environ. Health Perspect.
2006
, vol. 
114
 (pg. 
106
-
112
)
90.
Hugo
 
E. R.
Brandebourg
 
T. D.
Woo
 
J. G.
Loftus
 
J.
Alexander
 
J. W.
Ben-Jonathan
 
N.
Bisphenol A at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes
Environ. Health Perspect.
2008
, vol. 
116
 (pg. 
1642
-
1647
)
91.
Zsarnovszky
 
A.
Le
 
H. H.
Wang
 
H. S.
Belcher
 
S. M.
Ontogeny of rapid estrogen-mediated extracellular signal-regulated kinase signaling in the rat cerebellar cortex: potent nongenomic agonist and endocrine disrupting activity of the xenoestrogen bisphenol A
Endocrinology
2005
, vol. 
146
 (pg. 
5388
-
5396
)
92.
Thomas
 
P.
Dong
 
J.
Binding and activation of the seven-transmembrane estrogen receptor GPR30 by environmental estrogens: a potential novel mechanism of endocrine disruption
J. Steroid Biochem. Mol. Biol.
2006
, vol. 
102
 (pg. 
175
-
179
)
93.
Khan
 
N. G.
Correia
 
J.
Adiga
 
D.
Rai
 
P. S.
Dsouza
 
H. S.
Chakrabarty
 
S.
Kabekkodu
 
S. P.
A comprehensive review on the carcinogenic potential of bisphenol A: clues and evidence
Environ. Sci. Pollut. Res. Int.
2021
, vol. 
28
 (pg. 
19643
-
19663
)
94.
Nadal
 
A.
Fuentes
 
E.
Ripoll
 
C.
Villar-Pazos
 
S.
Castellano-Muñoz
 
M.
Soriano
 
S.
Martinez-Pinna
 
J.
Quesada
 
I.
Alonso-Magdalena
 
P.
Extranuclear-initiated estrogenic actions of endocrine disrupting chemicals: Is there toxicology beyond paracelsus?
J. Steroid Biochem. Mol. Biol.
2018
, vol. 
176
 (pg. 
16
-
22
)
95.
Chevalier
 
N.
Bouskine
 
A.
Fenichel
 
P.
Bisphenol A promotes testicular seminoma cell proliferation through GPER/GPR30
Int. J. Cancer
2012
, vol. 
130
 (pg. 
241
-
242
)
96.
González-Rojo
 
S.
Lombó
 
M.
Fernández-Díez
 
C.
Herráez
 
M. P.
Male exposure to bisphenol a impairs spermatogenesis and triggers histone hyperacetylation in zebrafish testes
Environ. Pollut.
2019
, vol. 
248
 (pg. 
368
-
379
)
97.
Qie
 
Y.
Qin
 
W.
Zhao
 
K.
Liu
 
C.
Zhao
 
L.
Guo
 
L. H.
Environmental Estrogens and Their Biological Effects through GPER Mediated Signal Pathways
Environ. Pollut.
2021
, vol. 
278
 pg. 
116826
 
98.
Xu
 
S.
Yu
 
S.
Dong
 
D.
Lee
 
L. T. O.
G Protein-Coupled Estrogen Receptor: A Potential Therapeutic Target in Cancer
Front. Endocrinol.
2019
, vol. 
10
 pg. 
725
 
99.
Revankar
 
C. M.
Mitchell
 
H. D.
Field
 
A. S.
Burai
 
R.
Corona
 
C.
Ramesh
 
C.
Sklar
 
L. A.
Arterburn
 
J. B.
Prossnitz
 
E. R.
Synthetic Estrogen Derivatives Demonstrate the Functionality of Intracellular GPR30
ACS Chem. Biol.
2007
, vol. 
2
 (pg. 
536
-
544
)
100.
Wang
 
C.
Zhang
 
J.
Li
 
Q.
Zhang
 
T.
Deng
 
Z.
Lian
 
J.
Jia
 
D.
Li
 
R.
Zheng
 
T.
Ding
 
X.
Yang
 
F.
Ma
 
C.
Wang
 
R.
Zhang
 
W.
Guo Wen
 
J.
Low concentration of BPA induces mice spermatocytes apoptosis via GPR30
Oncotarget
2017
, vol. 
8
 (pg. 
49005
-
49015
)
101.
Thomas
 
P.
Role of G-protein-coupled estrogen receptor (GPER/GPR30) in maintenance of meiotic arrest in fish oocytes
J. Steroid Biochem. Mol. Biol.
2017
, vol. 
167
 (pg. 
153
-
161
)
102.
Hafezi
 
S. A.
Abdel-Rahman
 
W. M.
The Endocrine Disruptor Bisphenol A (BPA) Exerts a Wide Range of Effects in Carcinogenesis and Response to Therapy
Curr. Mol. Pharmacol.
2019
, vol. 
12
 (pg. 
230
-
238
)
103.
Murata
 
M.
Kang
 
J. H.
Bisphenol A (BPA) and cell signaling pathways
Biotechnol. Adv.
2018
, vol. 
36
 (pg. 
311
-
327
)
104.
Qu
 
W.
Zhao
 
Z.
Chen
 
S.
Zhang
 
L.
Wu
 
D.
Chen
 
Z.
Bisphenol A suppresses proliferation and induces apoptosis in colonic epithelial cells through mitochondrial and MAPK/AKT pathways
Life Sci.
2018
, vol. 
208
 (pg. 
167
-
174
)
105.
Dong
 
S.
Terasaka
 
S.
Kiyama
 
R.
Bisphenol A induces a rapid activation of Erk1/2 through GPR30 in human breast cancer cells
Environ. Pollut.
2011
, vol. 
159
 (pg. 
212
-
218
)
106.
Pupo
 
M.
Pisano
 
A.
Lappano
 
R.
Santolla
 
M. F.
De Francesco
 
E. M.
Abonante
 
S.
Rosano
 
C.
Maggiolini
 
M.
Bisphenol A induces gene expression changes and proliferative effects through GPER in breast cancer cells and cancer-associated fibroblasts
Environ. Health Perspect.
2012
, vol. 
120
 (pg. 
1177
-
1182
)
107.
Sheng
 
Z. G.
Huang
 
W.
Liu
 
Y. X.
Zhu
 
B. Z.
Bisphenol A at a low concentration boosts mouse spermatogonial cell proliferation by inducing the G protein-coupled receptor 30 expression
Toxicol. Appl. Pharmacol.
2013
, vol. 
267
 (pg. 
88
-
94
)
108.
Zhang
 
X. L.
Liu
 
N.
Weng
 
S. F.
Wang
 
H. S.
Bisphenol A Increases the Migration and Invasion of Triple-Negative Breast Cancer Cells via Oestrogen-related Receptor Gamma
Basic Clin. Pharmacol. Toxicol.
2016
, vol. 
119
 (pg. 
389
-
395
)
109.
Okon
 
I. S.
Zou
 
M. H.
Mitochondrial ROS and cancer drug resistance: Implications for therapy
Pharmacol. Res.
2015
, vol. 
100
 (pg. 
170
-
174
)
110.
Sauer
 
S. J.
Tarpley
 
M.
Shah
 
I.
Save
 
A. V.
Lyerly
 
H. K.
Patierno
 
S. R.
Williams
 
K. P.
Devi
 
G. R.
Bisphenol A activates EGFR and ERK promoting proliferation, tumor spheroid formation and resistance to EGFR pathway inhibition in estrogen receptor-negative inflammatory breast cancer cells
Carcinogenesis
2017
, vol. 
38
 (pg. 
252
-
260
)
111.
Dairkee
 
S. H.
Luciani-Torres
 
M. G.
Moore
 
D. H.
Goodson, 3rd
 
W. H.
Bisphenol-A-induced inactivation of the p53 axis underlying deregulation of proliferation kinetics, and cell death in non-malignant human breast epithelial cells
Carcinogenesis
2013
, vol. 
34
 (pg. 
703
-
712
)
112.
Goodson 3rd
 
W. H.
Luciani
 
M. G.
Sayeed
 
S. A.
Jaffee
 
I. M.
D. H. Moore, 2nd and S. H. Dairkee, Activation of the mTOR pathway by low levels of xenoestrogens in breast epithelial cells from high-risk women
Carcinogenesis
2011
, vol. 
32
 (pg. 
1724
-
1733
)
113.
Wang
 
K. H.
Kao
 
A. P.
Chang
 
C. C.
Lin
 
T. C.
Kuo
 
T. C.
Bisphenol A-induced epithelial to mesenchymal transition is mediated by cyclooxygenase-2 up-regulation in human endometrial carcinoma cells
Reprod. Toxicol.
2015
, vol. 
58
 (pg. 
229
-
233
)
114.
Li
 
S.
Wang
 
B.
Tang
 
Q.
Liu
 
J.
Yang
 
X.
Bisphenol A triggers proliferation and migration of laryngeal squamous cell carcinoma via GPER mediated upregulation of IL-6
Cell Biochem. Funct.
2017
, vol. 
35
 (pg. 
209
-
216
)
115.
Zhang
 
K.-S.
Chen
 
H.-Q.
Chen
 
Y.-S.
Qiu
 
K.-F.
Zheng
 
X.-B.
Li
 
G.-C.
Yang
 
H.-D.
Wen
 
C.-J.
Bisphenol A stimulates human lung cancer cell migration via upregulation of matrix metalloproteinases by GPER/EGFR/ERK1/2 signal pathway
Biomed. Pharmacother.
2014
, vol. 
68
 (pg. 
1037
-
1043
)
116.
Castillo Sanchez
 
R.
Gomez
 
R.
Perez
 
E.
Salazar, Bisphenol A Induces Migration through a GPER-, FAK-, Src-, and ERK2-Dependent Pathway in MDA-MB-231 Breast Cancer Cells
Chem. Res. Toxicol.
2016
, vol. 
29
 (pg. 
285
-
295
)
117.
Ma
 
X. F.
Zhang
 
J.
Shuai
 
H. L.
Guan
 
B. Z.
Luo
 
X.
Yan
 
R. L.
IKKβ/NF-κB mediated the low doses of bisphenol A induced migration of cervical cancer cells
Arch. Biochem. Biophys.
2015
, vol. 
573
 (pg. 
52
-
58
)
118.
Ptak
 
A.
Gregoraszczuk
 
E. L.
Bisphenol A induces leptin receptor expression, creating more binding sites for leptin, and activates the JAK/Stat, MAPK/ERK and PI3K/Akt signalling pathways in human ovarian cancer cell
Toxicol. Lett.
2012
, vol. 
210
 (pg. 
332
-
337
)
119.
Quesada
 
I.
Fuentes
 
E.
Viso-León
 
M. C.
Soria
 
B.
Ripoll
 
C.
Nadal
 
A.
Low doses of the endocrine disruptor bisphenol-A and the native hormone 17beta-estradiol rapidly activate transcription factor CREB
FASEB J.
2002
, vol. 
16
 (pg. 
1671
-
1673
)
120.
Yaguchi
 
T.
The endocrine disruptor bisphenol A promotes nuclear ERRγ translocation, facilitating cell proliferation of Grade I endometrial cancer cells via EGF-dependent and EGF-independent pathways
Mol. Cell. Biochem.
2019
, vol. 
452
 (pg. 
41
-
50
)
121.
Huang
 
M.
Huang
 
M.
Li
 
X.
Liu
 
S.
Fu
 
L.
Jiang
 
X.
Yang
 
M.
Bisphenol A induces apoptosis through GPER-dependent activation of the ROS/Ca(2 +)-ASK1-JNK pathway in human granulosa cell line KGN
Ecotoxicol. Environ. Saf.
2021
, vol. 
208
 pg. 
111429
 
122.
García-Arevalo
 
M.
Alonso-Magdalena
 
P.
Rebelo Dos Santos
 
J.
Quesada
 
I.
Carneiro
 
E. M.
Nadal
 
A.
Exposure to bisphenol-A during pregnancy partially mimics the effects of a high-fat diet altering glucose homeostasis and gene expression in adult male mice
PLoS One
2014
, vol. 
9
 pg. 
e100214
 
123.
Moon
 
M. K.
Jeong
 
I. K.
Ahn
 
H. Y.
Kim
 
H. H.
Park
 
Y. J.
Jang
 
H. C.
Park
 
K. S.
Long-term oral exposure to bisphenol A induces glucose intolerance and insulin resistance
J. Endocrinol.
2015
, vol. 
226
 (pg. 
35
-
42
)
124.
Wang
 
A.
Luo
 
J.
Moore
 
W.
Alkhalidy
 
H.
Wu
 
L.
Zhang
 
J.
Zhen
 
W.
Wang
 
Y.
Clegg
 
D. J.
Bin
 
X.
Cheng
 
Z.
McMillan
 
R. P.
Hulver
 
M. W.
Liu
 
D.
GPR30 regulates diet-induced adiposity in female mice and adipogenesis in vitro
Sci. Rep.
2016
, vol. 
6
 pg. 
34302
 
125.
Cimmino
 
I.
Oriente
 
F.
D'Esposito
 
V.
Liguoro
 
D.
Liguoro
 
P.
Ambrosio
 
M. R.
Cabaro
 
S.
D'Andrea
 
F.
Beguinot
 
F.
Formisano
 
P.
Valentino
 
R.
Low-dose Bisphenol-A regulates inflammatory cytokines through GPR30 in mammary adipose cells
J. Mol. Endocrinol.
2019
, vol. 
63
 (pg. 
273
-
283
)
126.
Yu
 
L.
Das
 
P.
Vall
 
A. J.
Yan
 
Y.
Gao
 
X.
Sifre
 
M. I.
Bortner
 
C. D.
Castro
 
L.
Kissling
 
G. E.
Moore
 
A. B.
Dixon
 
D.
Bisphenol A induces human uterine leiomyoma cell proliferation through membrane-associated ERα36 via nongenomic signaling pathways
Mol. Cell. Endocrinol.
2019
, vol. 
484
 (pg. 
59
-
68
)
127.
Lan
 
X.
Fu
 
L. J.
Zhang
 
J.
Liu
 
X. Q.
Zhang
 
H. J.
Zhang
 
X.
Ma
 
M. F.
Chen
 
X. M.
He
 
J. L.
Li
 
L. B.
Wang
 
Y. X.
Ding
 
Y. B.
Bisphenol A exposure promotes HTR-8/SVneo cell migration and impairs mouse placentation involving upregulation of integrin-β1 and MMP-9 and stimulation of MAPKand PI3K signaling pathways
Oncotarget
2017
, vol. 
8
 (pg. 
51507
-
51521
)
128.
Jia
 
B.
Shi
 
T.
Li
 
Z.
Shan
 
S.
Ji
 
P.
Li
 
Z.
Toxicological effects of bisphenol A exposure-induced cancer cells migration via activating directly integrin β1
Chemosphere
2019
, vol. 
220
 (pg. 
783
-
792
)
129.
Somm
 
E.
Schwitzgebel
 
V. M.
Toulotte
 
A.
Cederroth
 
C. R.
Combescure
 
C.
Nef
 
S.
Aubert
 
M. L.
Hüppi
 
P. S.
Perinatal exposure to bisphenol a alters early adipogenesis in the rat
Environ. Health Perspect.
2009
, vol. 
117
 (pg. 
1549
-
1555
)
130.
Pu
 
Y.
Gingrich
 
J. D.
Steibel
 
J. P.
Veiga-Lopez
 
A.
Sex-Specific Modulation of Fetal Adipogenesis by Gestational Bisphenol A and Bisphenol S Exposure
Endocrinology
2017
, vol. 
158
 (pg. 
3844
-
3858
)
131.
Biasiotto
 
G.
Zanella
 
I.
Masserdotti
 
A.
Pedrazzani
 
R.
Papa
 
M.
Caimi
 
L.
Di
 
D.
Lorenzo, Municipal wastewater affects adipose deposition in male mice and increases 3T3-L1 cell differentiation
Toxicol. Appl. Pharmacol.
2016
, vol. 
297
 (pg. 
32
-
40
)
132.
Ariemma
 
F.
D'Esposito
 
V.
Liguoro
 
D.
Oriente
 
F.
Cabaro
 
S.
Liotti
 
A.
Cimmino
 
I.
Longo
 
M.
Beguinot
 
F.
Formisano
 
P.
Valentino
 
R.
Low-Dose Bisphenol-A Impairs Adipogenesis and Generates Dysfunctional 3T3-L1 Adipocytes
PLoS One
2016
, vol. 
11
 pg. 
e0150762
 
133.
Atlas
 
E.
Pope
 
L.
Wade
 
M. G.
Kawata
 
A.
Boudreau
 
A.
Boucher
 
J. G.
Bisphenol A increases aP2 expression in 3T3L1 by enhancing the transcriptional activity of nuclear receptors at the promoter
Adipocyte
2014
, vol. 
3
 (pg. 
170
-
179
)
134.
Boucher
 
J. G.
Gagné
 
R.
Rowan-Carroll
 
A.
Boudreau
 
A.
Yauk
 
C. L.
Atlas
 
E.
Bisphenol A and Bisphenol S Induce Distinct Transcriptional Profiles in Differentiating Human Primary Preadipocytes
PLoS One
2016
, vol. 
11
 pg. 
e0163318
 
135.
Wang
 
J.
Sun
 
B.
Hou
 
M.
Pan
 
X.
Li
 
X.
The environmental obesogen bisphenol A promotes adipogenesis by increasing the amount of 11β-hydroxysteroid dehydrogenase type 1 in the adipose tissue of children
Int. J. Obes.
2013
, vol. 
37
 (pg. 
999
-
1005
)
136.
Salehpour
 
A.
Shidfar
 
F.
Hedayati
 
M.
Neshatbini Tehrani
 
A.
Farshad
 
A. A.
Mohammadi
 
S.
Bisphenol A enhances adipogenic signaling pathways in human mesenchymal stem cells
Genes Environ.
2020
, vol. 
42
 pg. 
13
 
137.
DeBenedictis
 
B.
Guan
 
H.
Yang
 
K.
Prenatal Exposure to Bisphenol A Disrupts Mouse Fetal Liver Maturation in a Sex-Specific Manner
J. Cell. Biochem.
2016
, vol. 
117
 (pg. 
344
-
350
)
138.
Ma
 
Q.
Role of nrf2 in oxidative stress and toxicity
Annu. Rev. Pharmacol. Toxicol.
2013
, vol. 
53
 (pg. 
401
-
426
)
139.
Dong
 
Y.
Zhang
 
Z.
Liu
 
H.
Jia
 
L.
Qin
 
M.
Wang
 
X.
Exacerbating lupus nephritis following BPA exposure is associated with abnormal autophagy in MRL/lpr mice
Am. J. Transl. Res.
2020
, vol. 
12
 (pg. 
649
-
659
)
140.
Xu
 
J.
Donepudi
 
A. C.
More
 
V. R.
Kulkarni
 
S. R.
Li
 
L.
Guo
 
L.
Yan
 
B.
Chatterjee
 
T.
Weintraub
 
N.
Slitt
 
A. L.
Deficiency in Nrf2 transcription factor decreases adipose tissue mass and hepatic lipid accumulation in leptin-deficient mice
Obesity
2015
, vol. 
23
 (pg. 
335
-
344
)
141.
Nakamura
 
M.
Yamanaka
 
H.
Oguro
 
A.
Imaoka
 
S.
Bisphenol A induces Nrf2-dependent drug-metabolizing enzymes through nitrosylation of Keap1
Drug Metab. Pharmacokinet.
2018
, vol. 
33
 (pg. 
194
-
202
)
142.
Shimpi
 
P. C.
More
 
V. R.
Paranjpe
 
M.
Donepudi
 
A. C.
Goodrich
 
J. M.
Dolinoy
 
D. C.
Rubin
 
B.
Slitt
 
A. L.
Hepatic Lipid Accumulation and Nrf2 Expression following Perinatal and Peripubertal Exposure to Bisphenol A in a Mouse Model of Nonalcoholic Liver Disease
Environ. Health Perspect.
2017
, vol. 
125
 pg. 
087005
 
143.
Li
 
Q.
Davila
 
J.
Kannan
 
A.
Flaws
 
J. A.
Bagchi
 
M. K.
Bagchi
 
I. C.
Chronic Exposure to Bisphenol A Affects Uterine Function During Early Pregnancy in Mice
Endocrinology
2016
, vol. 
157
 (pg. 
1764
-
1774
)
144.
Schindler
 
Y. L.
Garske
 
K. M.
Wang
 
J.
Firulli
 
B. A.
Firulli
 
A. B.
Poss
 
K. D.
Yelon
 
D.
Hand2 elevates cardiomyocyte production during zebrafish heart development and regeneration
Development
2014
, vol. 
141
 (pg. 
3112
-
3122
)
145.
Moreman
 
J.
Lee
 
O.
Trznadel
 
M.
David
 
A.
Kudoh
 
T.
Tyler
 
C. R.
Acute Toxicity, Teratogenic, and Estrogenic Effects of Bisphenol A and Its Alternative Replacements Bisphenol S, Bisphenol F, and Bisphenol AF in Zebrafish Embryo-Larvae
Environ. Sci. Technol.
2017
, vol. 
51
 (pg. 
12796
-
12805
)
146.
Lombó
 
M.
González-Rojo
 
S.
Fernández-Díez
 
C.
Herráez
 
M. P.
Cardiogenesis impairment promoted by bisphenol A exposure is successfully counteracted by epigallocatechin gallate
Environ. Pollut.
2019
, vol. 
246
 (pg. 
1008
-
1019
)
147.
M.
Featherstone
, in
Advances in Developmental Biology and Biochemistry
,
Elsevier
,
2003
,
vol. 13
, pp. 1–42
148.
Lappin
 
T. R.
Grier
 
D. G.
Thompson
 
A.
Halliday
 
H. L.
HOX genes: seductive science, mysterious mechanisms
Ulster Med. J.
2006
, vol. 
75
 (pg. 
23
-
31
)
149.
Bodey
 
B.
Bodey, Jr.
 
B.
Siegel
 
S. E.
Kaiser
 
H. E.
Immunocytochemical detection of the homeobox B3, B4, and C6 gene products in breast carcinomas
Anticancer Res.
2000
, vol. 
20
 (pg. 
3281
-
3286
)
150.
Hayashida
 
T.
Takahashi
 
F.
Chiba
 
N.
Brachtel
 
E.
Takahashi
 
M.
Godin-Heymann
 
N.
Gross
 
K. W.
Vivanco
 
M. d. M.
Wijendran
 
V.
Shioda
 
T.
Sgroi
 
D.
Donahoe
 
P. K.
Maheswaran
 
S.
HOXB9, a gene overexpressed in breast cancer, promotes tumorigenicity and lung metastasis
Proceedings of the National Academy of Sciences
2010
, vol. 
107
 pg. 
1100
 
151.
Smith
 
C. C.
Taylor
 
H. S.
Xenoestrogen exposure imprints expression of genes (Hoxa10) required for normal uterine development
FASEB J.
2007
, vol. 
21
 (pg. 
239
-
246
)
152.
Deb
 
P.
Bhan
 
A.
Hussain
 
I.
Ansari
 
K. I.
Bobzean
 
S. A.
Pandita
 
T. K.
Perrotti
 
L. I.
Mandal
 
S. S.
Endocrine disrupting chemical, bisphenol-A, induces breast cancer associated gene HOXB9 expression in vitro and in vivo
Gene
2016
, vol. 
590
 (pg. 
234
-
243
)
153.
Hussain
 
I.
Bhan
 
A.
Ansari
 
K. I.
Deb
 
P.
Bobzean
 
S. A.
Perrotti
 
L. I.
Mandal
 
S. S.
Bisphenol-A induces expression of HOXC6, an estrogen-regulated homeobox-containing gene associated with breast cancer
Biochim Biophys Acta
2015
, vol. 
1849
 (pg. 
697
-
708
)
154.
Rochester
 
J. R.
Bisphenol A and human health: a review of the literature
Reprod. Toxicol.
2013
, vol. 
42
 (pg. 
132
-
155
)
155.
You
 
H. H.
Song
 
G.
Review of endocrine disruptors on male and female reproductive systems
Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol.
2021
, vol. 
244
 pg. 
109002
 
156.
vom Saal
 
F. S.
Akingbemi
 
B. T.
Belcher
 
S. M.
Birnbaum
 
L. S.
Crain
 
D. A.
Eriksen
 
M.
Farabollini
 
F.
Guillette, Jr.
 
L. J.
Hauser
 
R.
Heindel
 
J. J.
Ho
 
S.-M.
Hunt
 
P. A.
Iguchi
 
T.
Jobling
 
S.
Kanno
 
J.
Keri
 
R. A.
Knudsen
 
K. E.
Laufer
 
H.
LeBlanc
 
G. A.
Marcus
 
M.
McLachlan
 
J. A.
Myers
 
J. P.
Nadal
 
A.
Newbold
 
R. R.
Olea
 
N.
Prins
 
G.S.
Richter
 
C. A.
Rubin
 
B. S.
Sonnenschein
 
C.
Soto
 
A. M.
Talsness
 
C. E.
Vandenbergh
 
J. G.
Vandenberg
 
L. N.
Walser-Kuntz
 
D. R.
Watson
 
C. S.
Welshons
 
W. V.
Wetherill
 
Y.
Zoeller
 
R. T.
Chapel Hill bisphenol A expert panel consensus statement: integration of mechanisms, effects in animals and potential to impact human health at current levels of exposure
Reprod. Toxicol.
2007
, vol. 
24
 (pg. 
131
-
138
)
157.
Singh
 
S.
Li
 
S. S.-L.
Epigenetic Effects of Environmental Chemicals Bisphenol A and Phthalates
Int. J. Mol. Sci.
2012
, vol. 
13
 (pg. 
10143
-
10153
)
Close Modal

or Create an Account

Close Modal
Close Modal