Skip to Main Content
Skip Nav Destination

One of the most promising materials for photocatalysis is metal-free graphitic carbon-nitride (g-C3N4) that can be employed for a plethora of purposes, e.g. organic synthesis, energy conversion or wastewater remediation. g-C3N4 contains a suitable band gap in the visible light as well as excellent physicochemical stability. Nevertheless, several challenges have to be tackled with g-C3N4, for example, structural disorder, poor dispersion properties, low conductivity and also inconvenient processing. A combination with polymers belongs to the most versatile strategies to enhance g-C3N4 properties as a way toward advanced materials. The present chapter focuses on the studies and progress in g-C3N4/polymer materials, including (1) photoinitiator properties of g-C3N4, (2) modification of g-C3N4 with polymers for enhanced dispersion, (3) hybrid materials of g-C3N4 and polymers formed by physical or covalent attachment and (4) hydrogels based on g-C3N4. In addition, several applications are highlighted, e.g. biosensors, photocatalysis, batteries, H2 evolution and thin films. At the end, a summary and outlook on future developments as well as current issues of this research area are presented.

You do not currently have access to this chapter, but see below options to check access via your institution or sign in to purchase.
Don't already have an account? Register
Close Modal

or Create an Account

Close Modal
Close Modal