Skip to Main Content
Skip Nav Destination

Archaeological science is a discipline which is growing rapidly in its scope and maturity. The application of techniques deriving from the natural sciences to archaeological research is, of course, not new and the present volume rightly emphasizes some of the earlier initiatives in the field of archaeological chemistry. But amongst the indicators of this increasing maturity are the quality of the science, on the one hand, and a growing awareness of the problems of interpretation on the other.

This work by Pollard and Heron performs a valuable service in defining more carefully than hitherto and then richly exemplifying the field of archaeological chemistry, and it is fitting that it should be published by The Royal Society of Chemistry. Hitherto it is perhaps the discipline of physics which has come in for a good deal of the limelight since it holds what is almost a monopoly in two important fields of archaeological science: dating and prospecting. Some of the techniques of dating may indeed be included within the province of chemistry: amino acid racemization is dealt with very fully here, and obsidian hydration is mentioned. But many of the most useful dating methods are dependent upon radioactivity, a subject area often relinquished to physics. And again many of the techniques of field prospection – resistivity surveys, use of the proton magnetometer, etc. – fall within the same province.

As defined here it is, very reasonably, chemical analysis which lies at the heart of archaeological chemistry. Therefore, following the historical introduction, a wide-ranging survey of analytical techniques is undertaken which certainly offers the best overview currently available to the archaeologist. This is followed by what at first sight seems a comprehensive survey of examples and applications. On closer examination, however, it emerges that nearly every chapter is based in good measure upon the original research of one of the authors, supplemented by a further overview. Thus Heron's work on organic residues, notably resins, is put to very good use. Pollard's researches in the characterization of ceramics, in glass studies, and in the use of brass and other metals likewise form the basis for much wider reviews of important fields.

One of the great strengths of the book in my view is its clear perception that archaeology and archaeological science, although interrelated and interdependent, are not at all the same thing. For the interpretation of the data of archaeological science is a complicated and difficult matter, and it involves two separate operations. The first, the elucidation of rather concrete, factual questions – ‘how old is this sample?’, ‘where did it come from?’, ‘how has it been modified through burial in the ground?’ – fall within archaeological science proper. But this does not make them easy questions: the difficulties in the interpretation of the data from lead isotope analysis obtained in order to determine the places of origin of metals used in the Aegean is a case in point. Another such question would be the age and authenticity of the materials from the French site of Glozel – perhaps wisely not dealt with here, but still an unresolved problem in the field of archaeological science. The second operation is to achieve a clearer realization of the implications of such concrete conclusions for the understanding of human behaviour in the past. There the archaeologists and the archaeological scientists have yet to find more effective ways of working together: the thoughtful caution in the book makes an excellent start.

Archaeological chemistry is clearly not the same field as materials science, although the two overlap, nor as metallurgy: Chapter 6 draws a distinction between ‘the chemical study of metals’ and (I presume) the application of metallurgical techniques to elucidate the history of the working of individual artefacts. And this suggests to me that there lies here another sub-field which has not yet emerged, fully fledged, in its own right: the archaeology of technology, or archaeo-technology. For the time will come when we shall wish to focus more clearly upon processes and procedures of manufacture. The concept of the ‘chaine operatoire’ now commonly applied to the study of lithic artefacts and to the sequence of operations undertaken in their manufacture has been applied already to ceramics and can certainly be applied also to other products of pyrotechnology. Texts are available from Mesopotamia which give recipes for various preparation procedures, for instance those of metals, and very odd reading they make for modern eyes. This suggests to me that the study of ancient technology, giving more attention to what the ancient smiths, potters, glassblowers, and dyers thought they were doing – this is to say, laying greater emphasis upon cognitive aspects – will soon be a possibility. But in order to do this a prerequisite is to get the modern science right, and that is what Pollard and Heron are so systematically doing. It is a great pleasure to introduce a work which, more clearly than ever before, delineates an important field within archaeological science and thus makes an important contribution to the discipline as a whole.

Colin Renfrew

Cambridge

Close Modal

or Create an Account

Close Modal
Close Modal