Theoretical Chemistry for Electronic Excited States
Over the past few decades, experimental excited state chemistry has moved into the femtochemistry era, where time resolution is short enough to resolve nuclear dynamics. Recently, the time resolution has moved into the attosecond domain, where electronic motion can be resolved as well. Theoretical chemistry is becoming an essential partner in such experimental investigations; not only for the interpretation of the results, but also to suggest new experiments.
This book provides an integrated approach. The three main facets of excited-state theoretical chemistry; namely, mechanism, which focuses on the shape of the potential surface along the reaction path, multi-state electronic structure methods, and non-adiabatic dynamics, have been brought together into one volume. Theoretical Chemistry for Electronic Excited States is aimed at both theorists and experimentalists, involved in theoretical chemistry, in electronic structure computations and in molecular dynamics. The book will provide both with the knowledge and understanding to discover ways to work together more closely through its unified approach.
M. A. Robb, Theoretical Chemistry for Electronic Excited States, The Royal Society of Chemistry, 2018.
Download citation file:
Digital access
Print format
Table of contents
Spotlight
Advertisement
Advertisement